complex and simple spikes
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2015 ◽  
Vol 114 (3) ◽  
pp. 1746-1756 ◽  
Author(s):  
Greta Sokoloff ◽  
Alan M. Plumeau ◽  
Didhiti Mukherjee ◽  
Mark S. Blumberg

The cerebellum is a critical sensorimotor structure that exhibits protracted postnatal development in mammals. Many aspects of cerebellar circuit development are activity dependent, but little is known about the nature and sources of the activity. Based on previous findings in 6-day-old rats, we proposed that myoclonic twitches, the spontaneous movements that occur exclusively during active sleep (AS), provide generalized as well as topographically precise activity to the developing cerebellum. Taking advantage of known stages of cerebellar cortical development, we examined the relationship between Purkinje cell activity (including complex and simple spikes), nuchal and hindlimb EMG activity, and behavioral state in unanesthetized 4-, 8-, and 12-day-old rats. AS-dependent increases in complex and simple spike activity peaked at 8 days of age, with 60% of units exhibiting significantly more activity during AS than wakefulness. Also, at all three ages, approximately one-third of complex and simple spikes significantly increased their activity within 100 ms of twitches in one of the two muscles from which we recorded. Finally, we observed rhythmicity of complex and simple spikes that was especially prominent at 8 days of age and was greatly diminished by 12 days of age, likely due to developmental changes in climbing fiber and mossy fiber innervation patterns. All together, these results indicate that the neurophysiological activity of the developing cerebellum can be used to make inferences about changes in its microcircuitry. They also support the hypothesis that sleep-related twitches are a prominent source of discrete climbing and mossy fiber activity that could contribute to the activity-dependent development of this critical sensorimotor structure.


2001 ◽  
Vol 86 (5) ◽  
pp. 2489-2504 ◽  
Author(s):  
Cornelius Schwarz ◽  
John P. Welsh

We investigated the effects of climbing fiber synchrony on the temporal dynamics of mossy fiber system throughput in populations of cerebellar Purkinje cells (PCs). A multielectrode technique was used in ketamine-anesthetized rats that allowed both complex and simple spikes (CSs and SSs) to be recorded from multiple PCs simultaneously in lobule crus IIa. Stimulation of the tongue area of the primary motor cortex (TM1) was used to evoke cerebro-cerebellar interaction. At the single PC level, robust short-term interactions of CSs and SSs were observed after TM1 stimulation that typically consisted of an immediate depression and subsequent enhancement of SS firing after the occurrence of a CS. Such modulations of SS rate in a given PC were as robustly correlated to the CSs of simultaneously recorded PCs as they were to the CS on its own membrane—and did not require a CS on its own membrane—indicating a network basis for the interaction. Analyses of simultaneously recorded PCs using the normalized joint perievent time histogram demonstrated that CS and SS firing were dynamically correlated after TM1 stimulation in a manner that indicated strong control of mossy fiber system throughput by CS synchrony. For ≤300 ms after TM1 stimulation, most PCs showed episodic modulations in SS rate that appeared to be entrained by the population rhythm of climbing fiber synchrony. SS rhythmicity also was modulated dynamically by CSs, such that it was depressed by CSs and facilitated by their absence. Like the modulations in SS rate, a given PC's modulation in SS rhythmicity did not require it to fire a CS but was, on those instances, equally correlated to the synchronous CSs of other PCs. The data indicate that the climbing fiber system controls the temporal dynamics of SS firing in populations of PCs by using synchrony to engage intracerebellar circuitry and modulate mossy fiber system throughput.


Sign in / Sign up

Export Citation Format

Share Document