dependent coordinates
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Dequan Zhang ◽  
Xu Han

Abstract Kinematic reliability of robotic manipulators is the linchpin for restraining the positional errors within acceptable limits. This work develops an efficient reliability analysis method to account for random dimensions and joint angles of robotic mechanisms. It aims to proficiently predict the kinematic reliability of robotic manipulators. The kinematic reliability is defined by the probability that the actual position of an end-effector falls into a specified tolerance sphere, which is centered at the target position. The motion error is indicated by a compound function of independent standard normal variables constructed by three co-dependent coordinates of the end-effector. The saddle point approximation is then applied to compute the kinematic reliability. Exemplification demonstrates satisfactory accuracy and efficiency of the proposed method due to the construction and the saddle point since random simulation is spared.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950068
Author(s):  
S. N. Storchak

The local Lagrange–Poincaré equations (the reduced Euler–Lagrange equations) for the mechanical system describing the motion of a scalar particle on a finite-dimensional Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are obtained. The equations are written in terms of dependent coordinates which are used to represent the local dynamic given on the orbit space of the principal fiber bundle. The derivation of the equations is performed with the help of the variational principle developed by Poincaré for mechanical systems with symmetry.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Jiadong Wang ◽  
Sai Huen Lo ◽  
Ding Zhou ◽  
Yun Dong

Nonlinear response of liquid partially filled in a rigid cylindrical container with a rigid annular baffle subjected to lateral excitation is studied. A semianalytical approach is presented to determine the natural frequencies and modes of the liquid sloshing. Introducing the generalized time-dependent coordinates, the surface wave height and the velocity potential are expressed in terms of the natural modes of liquid sloshing. Based on the Bateman–Luke variational principle, the infinite-dimensional modal system is given by the variational procedure. The infinite-dimensional modal system is reduced by using the Moiseev asymptotic relations. The resultant hydrodynamic force and moment of the liquid pressure acting on the container mainly depend on the position vector of the mass center of the liquid. Expanding the integral about the weighted position coordinates into the Taylor series about the surface wave height at the unperturbed free surface gives the formula of the position vector of the mass center, which depends only on the generalized time-dependent coordinates. Excellent agreements have been achieved by comparing the present results with those obtained from Gavrilyuk’s solution and SPH solution. Finally, the surface wave height, resultant hydrodynamic force, and hydrodynamic moment for a container subjected to harmonic lateral excitation are discussed in detail.


2018 ◽  
Vol 28 (4) ◽  
pp. 2083-2104 ◽  
Author(s):  
Alexander E. Litvak ◽  
Konstantin Tikhomirov

2017 ◽  
Vol 8 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Salvador Cardona Foix ◽  
Lluïsa Jordi Nebot ◽  
Joan Puig-Ortiz

Abstract. The mechanisms of one degree of freedom can be dynamically analysed by setting out a single differential equation of motion which variable is the generalized coordinate selected as independent. In front of the use of a set of generalized dependent coordinates to describe the system, the method exposed in this work has the advantage of working with a single variable but leads to complex analytical expressions for the coefficients of the differential equation, even in simple mechanisms. The theoretical approach, in this paper, is developed from Eksergian's method and Lagrange's equations. The equation of motion is written by means of a set of parameters – reduced parameters – that characterize the dynamic behaviour of the system. These parameters are function of the independent coordinate chosen and its derivative and can be obtained numerically by direct calculus or by means of a kinetostatic analysis, as is proposed. Two cases of study of the method are presented. The first example shows the study of pedalling a stationary bicycle used in a rehabilitation process. The second one shows the analysis of a single dwell bar mechanism which is driven by an electric motor.


2017 ◽  
Vol 17 (05) ◽  
pp. 1740004 ◽  
Author(s):  
László Bencsik ◽  
László L. Kovács ◽  
Ambrus Zelei

The model-based motion control of underactuated, multiple degree-of-freedom, complex multibody systems is in focus. Underactuated mechanical systems possess less number of independent control inputs than degrees-of-freedom. The main difficulty in their control is caused by the dynamics of the uncontrolled part of the system. The complexity of multibody systems makes the dynamical and control formulation difficult. The direct application of traditional control techniques available in the literature can lead to unstable dynamic behavior in many cases. In order to avoid instability, these general methods are usually adapted for specific problems in an intuitive way. Here, we present a direct, more algorithmic approach, and propose the use of periodic servo-constraints to overcome stability problems and enhance the dynamic behavior. An exact, stability analysis-based method is also proposed for tuning the control parameters. A stability analysis procedure is developed which is directly applicable for investigating the dynamics of mechanical systems described by dependent coordinates and mathematically formulated as a set of algebraic differential equations.


2016 ◽  
Vol 72 (5) ◽  
pp. 570-581 ◽  
Author(s):  
Lidija Čomić ◽  
Benedek Nagy

Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis.


Sign in / Sign up

Export Citation Format

Share Document