2d clinostat
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

Author(s):  
Mohd Rashid Yusof Hamid ◽  
Boon Hoong Ong ◽  
Mohd Helmy Hashim ◽  
Tze Kian Jong

2021 ◽  
Vol 22 (19) ◽  
pp. 10702
Author(s):  
Yansiwei Cheng ◽  
Yuhao Zhou ◽  
Wenjun Lv ◽  
Qing Luo ◽  
Guanbin Song

Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into dermal fibroblasts to participate in skin-repairing. However, at present, little is known about how microgravity affects dermal fibroblastic differentiation of BMSCs in space. The aim of this study was to investigate the effect of simulated microgravity (SMG) on the differentiation of BMSCs into dermal fibroblasts and the related molecular mechanism. Here, using a 2D-clinostat device to simulate microgravity, we found that SMG inhibited the differentiation and suppressed the Wnt/β-catenin signaling and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2). After upregulating the Wnt/β-catenin signaling with lithium chloride (LiCl) treatment, we found that the effect of the differentiation was restored. Moreover, the Wnt/β-catenin signaling was upregulated when phosphorylation of ERK1/2 was activated with tert-Butylhydroquinone (tBHQ) treatment. Taken together, our findings suggest that SMG inhibits dermal fibroblastic differentiation of BMSCs by suppressing ERK/β-catenin signaling pathway, inferring that ERK/β-catenin signaling pathway may act as a potential intervention target for repairing skin injury under microgravity conditions.


2021 ◽  
Vol 9 (1) ◽  
pp. 170-185
Author(s):  
Joseph S. Tolsma ◽  
Kaetlyn T. Ryan ◽  
Jacob J. Torres ◽  
Jeffrey T. Richards ◽  
Zach Richardson ◽  
...  

Abstract For long-term space missions, it is necessary to understand how organisms respond to changes in gravity. Plant roots are positively gravitropic; the primary root grows parallel to gravity's pull even after being turned away from the direction of gravity. We examined if this gravitropic response varies depending on the time of day reorientation occurs. When plants were reoriented in relation to the gravity vector or placed in simulated microgravity, the magnitude of the root gravitropic response varied depending on the time of day the initial change in gravity occurred. The response was greatest when plants were reoriented at dusk, just before a period of rapid growth, and were minimal just before dawn as the plants entered a period of reduced root growth. We found that this variation in the magnitude of the gravitropic response persisted in constant light (CL) suggesting the variation is circadian-regulated. Gravitropic responses were disrupted in plants with disrupted circadian clocks, including plants overexpressing Circadian-clock Associated 1 (CCA1) and elf3-2, in the reorientation assay and on a 2D clinostat. These findings indicate that circadian-regulated pathways modulate the gravitropic responses, thus, highlighting the importance of considering and recording the time of day gravitropic experiments are performed.


2020 ◽  
Vol 21 (2) ◽  
pp. 514 ◽  
Author(s):  
Cora Sandra Thiel ◽  
Swantje Christoffel ◽  
Svantje Tauber ◽  
Christian Vahlensieck ◽  
Diane de Zélicourt ◽  
...  

Cellular processes are influenced in many ways by changes in gravitational force. In previous studies, we were able to demonstrate, in various cellular systems and research platforms that reactions and adaptation processes occur very rapidly after the onset of altered gravity. In this study we systematically compared differentially expressed gene transcript clusters (TCs) in human Jurkat T cells in microgravity provided by a suborbital ballistic rocket with vector-averaged gravity (vag) provided by a 2D clinostat. Additionally, we included 9× g centrifuge experiments and rigorous controls for excluding other factors of influence than gravity. We found that 11 TCs were significantly altered in 5 min of flight-induced and vector-averaged gravity. Among the annotated clusters were G3BP1, KPNB1, NUDT3, SFT2D2, and POMK. Our results revealed that less than 1% of all examined TCs show the same response in vag and flight-induced microgravity, while 38% of differentially regulated TCs identified during the hypergravity phase of the suborbital ballistic rocket flight could be verified with a 9× g ground centrifuge. In the 2D clinostat system, doing one full rotation per second, vector effects of the gravitational force are only nullified if the sensing mechanism requires 1 s or longer. Due to the fact that vag with an integration period of 1 s was not able to reproduce the results obtained in flight-induced microgravity, we conclude that the initial trigger of gene expression response to microgravity requires less than 1 s reaction time. Additionally, we discovered extensive gene expression differences caused by simple handling of the cell suspension in control experiments, which underlines the need for rigorous standardization regarding mechanical forces during cell culture experiments in general.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135157 ◽  
Author(s):  
Benjamin Svejgaard ◽  
Markus Wehland ◽  
Xiao Ma ◽  
Sascha Kopp ◽  
Jayashree Sahana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document