chondroitin sulphate chain
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2003 ◽  
Vol 50 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Erik Fries ◽  
Aneta Kaczmarczyk

Inter-alpha-inhibitor is an abundant plasma protein whose physiological function is only now beginning to be revealed. It consists of three polypeptides: two heavy chains and one light chain called bikunin. Bikunin, which has antiproteolytic activity, carries a chondroitin sulphate chain to which the heavy chains are covalently linked. The heavy chains can be transferred from inter-alpha-inhibitor to hyaluronan molecules and become covalently linked. This reaction seems to be mediated by TSG-6, a protein secreted by various cells upon stimulation by inflammatory cytokines. Inter-alpha-inhibitor has been shown to be required for the stabilization of the cumulus cell-oocyte complex during the expansion that occurs prior to ovulation. Hyaluronan-linked heavy chains in the extracellular matrix of this cellular complex have recently been shown to be tightly bound to TSG-6. Since TSG-6 binds to hyaluronan, its complex with heavy chains could stabilize the extracellular matrix by cross-linking hyaluronan molecules. Heavy chains linked to hyaluronan molecules have also been found in inflamed tissues. The physiological role of these complexes is not known but there are indications that they might protect hyaluronan against fragmentation by reactive oxygen species. TSG-6 also binds to bikunin thereby enhancing its antiplasmin activity. Taken together, these results suggest that inter-alpha-inhibitor is an anti-inflammatory agent which is activated by TSG-6.


1997 ◽  
Vol 328 (1) ◽  
pp. 185-191 ◽  
Author(s):  
M. Anna BLOM ◽  
Maria THUVESON ◽  
Erik FRIES

Pre-α-inhibitor is a serum protein consisting of two polypeptides: bikunin of 16 kDa, which carries an 8 kDa chondroitin sulphate chain, and heavy chain 3 (H3) of 74 kDa. The two polypeptides are linked through an ester bond between an internal N-acetylgalactosamine residue of the chondroitin sulphate chain and the C-terminal aspartic acid residue of H3. Both bikunin and H3 are synthesized by hepatocytes and become linked as they pass through the Golgi complex. H3 is synthesized with both N- and C-terminal extensions which are released during intracellular transport. To be able to analyse the assembly of pre-α-inhibitor in detail, we have cloned and sequenced the cDNA of rat H3. Upon expression of the protein in COS-1 cells, both propeptides were found to be released. Furthermore, co-expression of H3 and bikunin resulted in the two polypeptides becoming coupled, indicating that cells other than hepatocytes may have the capacity to form chondroitin sulphate-containing links.


1991 ◽  
Vol 273 (1) ◽  
pp. 237-239 ◽  
Author(s):  
J R Baker ◽  
J E Christner ◽  
S L Ekborg

The chondroitin sulphate chains of proteoglycans are not uniformly sulphated. Commonly, regions of under- and over-sulphation are found. It is probable that variability in chondroitin sulphation has physiological significance, although such structure-function relationships largely remain unexplored. Chondroitin sulphate from rat chondrosarcoma proteoglycan has been found to possess no oversulphated residues. It is primarily chondroitin 4-sulphate, although a significant proportion of unsulphated disaccharides (14%) are also present. It appears that some unsulphated disaccharides are concentrated only at the point of attachment to the linkage region (i.e. it is the major unsaturated disaccharide remaining attached to chondrosarcoma proteoglycan core produced by chondroitinase ABC digestion). This proteoglycan core binds monoclonal antibody (MAb) 3B3. Although 3B3 principally binds to 6-sulphated ‘stubs’ of proteoglycan cores [Couchman, Caterson, Christner & Baker (1984) Nature (London) 307, 650-652], given a high concentration of unsulphated ‘stubs’, it can alternatively bind to these residues. It is also evident that caution must be exercised in using MAb 3B3 to identify chondroitin 6-sulphated proteoglycans.


1985 ◽  
Vol 227 (3) ◽  
pp. 805-814 ◽  
Author(s):  
J A Robinson ◽  
H C Robinson

beta-Galactosides were found to initiate chondroitin sulphate chain synthesis in chick-embryo cartilage in vitro and thereby relieve inhibition by cycloheximide of [3H]-acetate incorporation into chondroitin sulphate. beta-Galactosides with an apolar aglycan group such as phenyl O-beta-galactoside were active, whereas those with a charged or polar aglycan group such as pyridine 3-O-beta-galactoside or those with sulphur instead of oxygen in the glycosidic linkage (phenyl beta-thiogalactoside) were not. beta-Galactosides also serve as substrates for microsomal galactosyltransferase activity from chick-embryo cartilage. Phenyl O-beta-galactoside and pyridine 3-O-beta-galactoside were effective substrates for this enzyme, but phenyl S-beta-thiogalactoside and pyridine 2-S-beta-thiogalactoside were only slightly active. This galactosyltransferase was shown to be a separate enzyme from galactosyltransferase I, which catalyses transfer of galactose from UDP-galactose to beta-xylosides. It is proposed that the enzyme catalysing this reaction is galactosyltransferase II, responsible for transfer of the second galactose residue of the chondroitin sulphate linkage oligosaccharide. No transfer of glucuronic acid from UDP-glucuronic acid to beta-galactosides, catalysed by the microsomal preparation could be detected.


1984 ◽  
Vol 224 (3) ◽  
pp. 977-988 ◽  
Author(s):  
D J McQuillan ◽  
C J Handley ◽  
H C Robinson ◽  
K Ng ◽  
C Tzaicos ◽  
...  

The effect of cycloheximide on chondroitin sulphate biosynthesis was studied in bovine articular cartilage maintained in culture. Addition of 0.4 mM-cycloheximide to the culture medium was followed, over the next 4h, by a first-order decrease in the rate of incorporation of [35S]sulphate into glycosaminoglycan (half-life, t 1/2 = 32 min), which is consistent with the depletion of a pool of proteoglycan core protein. Addition of 1.0 mM-benzyl beta-D-xyloside increased the rate of incorporation of [35S]sulphate and [3H]acetate into glycosaminoglycan, but this elevated rate was also diminished by cycloheximide. It was concluded that cycloheximide exerted two effects on the tissue; not only did it inhibit the synthesis of the core protein, but it also lowered the tissue's capacity for chondroitin sulphate chain synthesis. Similar results were obtained with chick chondrocytes grown in high-density cultures. Although the exact mechanism of this secondary effect of cycloheximide is not known, it was shown that there was no detectable change in cellular ATP concentration or in the amount of three glycosyltransferases (galactosyltransferase-I, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II) involved in chondroitin sulphate chain synthesis. The sizes of the glycosaminoglycan chains formed in the presence of cycloheximide were larger than those formed in control cultures, whereas those synthesized in the presence of benzyl beta-D-xyloside were consistently smaller, irrespective of the presence of cycloheximide. These results suggest that beta-D-xylosides must be used with caution to study chondroitin sulphate biosynthesis as an event entirely independent of proteoglycan core-protein synthesis, and they also indicate a possible involvement of the core protein in the activation of the enzymes of chondroitin sulphate synthesis.


1981 ◽  
Vol 196 (2) ◽  
pp. 521-529 ◽  
Author(s):  
D Mitchell ◽  
T Hardingham

Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.


1981 ◽  
Vol 194 (3) ◽  
pp. 839-846 ◽  
Author(s):  
J A Robinson ◽  
H C Robinson

Embryonic-chicken epiphyseal cartilage was incubated in vitro with a variety of beta-xylosides and the amount of [3H]acetate incorporation into chondroitin sulphate was determined under conditions when normal protein core production was inhibited by cycloheximide. The ability of the different beta-xylosides to relieve thea cycloheximide-mediated inhibition of chondroitin sulphate synthesis was influenced by the nature of the aglycan group of te xyloside. beta-Xylosides with apolar and uncharged aglycan groups were most effective and produced a severalfold stimulation of chondroitin sulphate biosynthesis. beta-Xylosides with charged aglycan groups were less effective initiators of chondroitin sulphate synthesis. The rate of galactose transfer from UDP-galactose to each of the beta-xylosides, catalysed by a cell-free microsomal preparation from embryonic cartilage, was measured. This study showed that the nature of the aglycan group of the beta-xyloside was a factor determining the capacity of the xyloside to act as an acceptor for galactosyltransferase I, the enzyme that catalyses the first galactose transfer reaction of chondroitin sulphate synthesis. The aglycan group of the xyloside also appeared to influence other steps leading to chondroitin sulphate chain initiation in vitro.


1975 ◽  
Vol 151 (1) ◽  
pp. 157-166 ◽  
Author(s):  
J Thyberg ◽  
S Lohmander ◽  
D Heinegård

Proteoglycan monomers from guinea-pig costal cartilage, bovine nasal and bovine tracheal cartilage were observed in the electron microscope after being spread in a monomolecular layer with cytochrome c. The proteoglycan molecule appeared as an extended central core filament to which side-chain filaments were attached at various intervals. The molecules from the three sources displayed great ultrastructural similarities. On average, the core filament was about 290 nm long, there were about 25 side-chain filaments per core filament, the side-chain filaments were about 45 nm long, and the distance between the attachment points of the side-chain filaments to the core filament was about 11 nm. With regard to the overall size of the molecules, no evidence of distinct subpopulations was obtained. Good correlation was found between ultrastructural data for the proteoglycan molecules and chemical data obtained by enzyme digestions and gel chromatography. Together these data strongly support the interpretation of the electron-microscopic pictures as indicating a central filament corresponding to the protein core and side-chain filaments corresponding to the chondroitin sulphate chain clusters of the proteoglycan monomers.


1971 ◽  
Vol 125 (3) ◽  
pp. 903-908 ◽  
Author(s):  
Åke Wasteson ◽  
Ulf Lindahl

1. Electrophoresis of chondroitin sulphate, before and after partial degradation with testicular hyaluronidase, revealed charge heterogeneity of the degraded but not of the intact polymer. 2. Hyaluronidase-treated chondroitin sulphate was fractionated by gel chromatography. Two subfractions which were essentially monodisperse with regard to molecular weight (values of 8600 and 4800, respectively) were separated further by chromatography on Dowex 1. The resulting subfractions differed considerably with respect to their sulphate/disaccharide molar ratios. 3. Amino acid and neutral-sugar analyses of the Dowex 1 subfractions showed that the less sulphated fragments contained the carbohydrate–protein linkage region, whereas the high-sulphated fragments essentially lacked this constituent. It was concluded that chondroitin sulphate contains relatively less sulphate in the vicinity of the carbohydrate–protein linkage region than in the more peripheral portion of the polysaccharide chain.


Sign in / Sign up

Export Citation Format

Share Document