gene body region
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 6)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhanyu Xu ◽  
Fanglu Qin ◽  
Liqiang Yuan ◽  
Jiangbo Wei ◽  
Yu Sun ◽  
...  

BackgroundThe epidermal growth factor receptor (EGFR) is a primary target of molecular targeted therapy for lung adenocarcinoma (LUAD). The mechanisms that lead to epigenetic abnormalities of EGFR in LUAD are still unclear. The purpose of our study was to evaluate the abnormal methylation of EGFR CpG sites as potential biomarkers for LUAD.MethodsTo assess the differentially methylation CpG sites of EGFR in LUAD, we used an integrative study of Illumina HumanMethylation450K and RNA-seq data from The Cancer Genome Atlas (TCGA). We evaluated and compared EGFR multiple-omics data to explore the role of CpG sites located in EGFR promoter regions and gene body regions and the association with transcripts, protein expression levels, mutations, and somatic copy number variation. We calculated the correlation coefficients between CpG sites of EGFR and immune infiltration fraction (by MCPcounter and ESTIMATE) and immune-related pathways in LUAD. Finally, we validated the differential methylation of clinically and prognostically relevant CpG sites using quantitative methylation-specific PCR (qMSP).ResultsWe found that the methylation level of many EGFR CpGs in the promoter region was negatively correlated with the transcription level, protein expression, and SCNV, while the methylation at the gene body region was positively correlated with these features. The methylation level of EGFR CpGs in the promoter region was positively correlated with the level of immune infiltration and IFN-γ signature, while the opposite was found for methylation of the gene body region. The qMSP results showed that cg02316066 had a high methylation level, while cg02166842 had a low methylation level in LUAD. There was a high degree of co-methylation between cg02316066 and cg03046247.ConclusionOur data indicate that EGFR is an epigenetic regulator in LUAD acting through DNA methylation. Our research provides a theoretical basis for the further detection of EGFR DNA methylation as a predictive biomarker for LUAD survival and immunotherapy.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kazuki Mochizuki ◽  
Shiori Ishiyama ◽  
Natsuyo Hariya ◽  
Toshinao Goda

Studies indicate that induction of metabolic gene expression by nutrient intake, and in response to subsequently secreted hormones, is regulated by transcription factors binding to cis-elements and associated changes of epigenetic memories (histone modifications and DNA methylation) located in promoter and enhancer regions. Carbohydrate intake-mediated induction of metabolic gene expression is regulated by histone acetylation and the histone acetylation reader bromodomain-containing protein 4 (BRD4) on the gene body region, which corresponds to the transcribed region of the gene. In this review, we introduce carbohydrate-responsive metabolic gene regulation by (i) transcription factors and epigenetic memory in promoter/enhancer regions (promoter/enhancer-based epigenetics), and (ii) histone acetylation and BRD4 in the gene body region (gene body-based epigenetics). Expression of carbohydrate-responsive metabolic genes related to nutrient digestion and absorption, fat synthesis, inflammation in the small intestine, liver and white adipose tissue, and in monocytic/macrophage-like cells are regulated by various transcription factors. The expression of these metabolic genes are also regulated by transcription elongation via histone acetylation and BRD4 in the gene body region. Additionally, the expression of genes related to fat synthesis, and the levels of acetylated histones and BRD4 in fat synthesis-related genes, are downregulated in white adipocytes under insulin resistant and/or diabetic conditions. In contrast, expression of carbohydrate-responsive metabolic genes and/or histone acetylation and BRD4 binding in the gene body region of these genes, are upregulated in the small intestine, liver, and peripheral leukocytes (innate leukocytes) under insulin resistant and/or diabetic conditions. In conclusion, histone acetylation and BRD4 binding in the gene body region as well as transcription factor binding in promoter/enhancer regions regulate the expression of carbohydrate-responsive metabolic genes in many metabolic organs. Insulin resistant and diabetic conditions induce the development of metabolic diseases, including type 2 diabetes, by reducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in white adipose tissue and by inducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in the liver, small intestine, and innate leukocytes including monocytes/macrophages and neutrophils.


2021 ◽  
Author(s):  
Songling Zhu ◽  
Hongxia Bao ◽  
Mengchun Zhang ◽  
Xingjuan Zhao ◽  
Shu-lin Liu

Abstract Background: Previous studies have shown that KAZN is involved in multiple biological processes such as cell development, proliferation, differentiation, and apoptosis. Most of the studies related to KAZN have been carried out in keratinocytes. Apart from that, KAZN is also expressed in other tissues, such as the ovary. However, the related research is relatively few and the function in other tissue or cell is still not clear. Methods: We investigated the correlations between KAZN expression and clinical characteristics of ovarian cancer (OC) and compared methylation levels of normal and OC samples through data collected from Gene Expression Omnibus (GEO) microarrays, The Cancer Genome Atlas (TCGA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC). The relationships among differentially methylated sites in the KAZN gene, corresponding KAZN mRNA expression levels and prognosis were further analyzed.Results: KAZN was up-regulated in ovarian epithelial tumors and the expression of KAZN was correlated with the patients’ survival time. KAZN CpG site cg17657618 was positively correlated to the expression of mRNA and the methylation levels are significantly differential between the group of the stage of “I and II” the group of the stage “III and IV”. This study also presents a method to classify tumor and normal tissue in OC using DNA methylation pattern in the KAZN gene body region. Conclusions: We validated that KAZN was involved in ovarian cancer progression. These results may provide a new direction for ovarian cancer research and provide a potential diagnostic biomarker and therapeutic target.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

AbstractSDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tingting Gao ◽  
Fuquan Chen ◽  
Wenying Zhang ◽  
Xuan Zhao ◽  
Xiao Hu ◽  
...  

The facilitates chromatin transcription (FACT) complex is a histone H2A/H2B chaperone, which represses endogenous retroviruses (ERVs) and transcription of ERV-chimeric transcripts. It binds to both transcription start site and gene body region. Here, we investigated the downstream targets of FACT complex to identify the potential regulators of MERVL, which is a key 2-cell marker gene. H3K36me2 profile was positively correlated with that of FACT component Ssrp1. Among H3K36me2 deposition enzymes, Nsd2 was downregulated after the loss of Ssrp1. Furthermore, we demonstrated that Nsd2 repressed the expression of ERVs without affecting the expression of pluripotency genes. The expression of MERVL and 2-cell genes was partially rescued by Nsd2 overexpression. The enrichment of H3K36me2 decreased on MERVL-chimeric gene in ESCs without Ssrp1. Our study discovers that Nsd2 is a repressor of MERVL, and FACT partially represses MERVL expression by regulating the expression of Nsd2 and its downstream H3K36me2.


2020 ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

Abstract SDG711 is a histone H3K27me2/3 transmethylases in rice, homolog ofCLFin Arabidopsis, that plays key roles in regulating of flowering time and panicle development. In this work, we investigated that the role of SDG711 in rice seed development. Overexpression and down-regulation of SDG711lead to the decrease and increase of the expression level of genes related to starch accumulation, resulting in smaller seed or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of endosperm. Our results suggested that the crosstalk of SDG711-mediated H3K27me3 with H3K4me3 and H3K9ac are involved in starch accumulation to control normal seed development.


Sign in / Sign up

Export Citation Format

Share Document