scholarly journals SDG711 is Involved in Rice Seed Development Through Regulation of Starch Metabolism Gene Expression in Coordination With Other Histone Modifications

2020 ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

Abstract SDG711 is a histone H3K27me2/3 transmethylases in rice, homolog ofCLFin Arabidopsis, that plays key roles in regulating of flowering time and panicle development. In this work, we investigated that the role of SDG711 in rice seed development. Overexpression and down-regulation of SDG711lead to the decrease and increase of the expression level of genes related to starch accumulation, resulting in smaller seed or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of endosperm. Our results suggested that the crosstalk of SDG711-mediated H3K27me3 with H3K4me3 and H3K9ac are involved in starch accumulation to control normal seed development.

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoyun Liu ◽  
Junling Luo ◽  
Tiantian Li ◽  
Huilan Yang ◽  
Ping Wang ◽  
...  

AbstractSDG711 is a histone H3K27me2/3 transmethylase in rice, a homolog of CLF in Arabidopsis, and plays key roles in regulating flowering time and panicle development. In this work, we investigated the role of SDG711 in rice seed development. Overexpression and downregulation of SDG711 lead to a decrease and increase in the expression level of genes related to starch accumulation, resulting in smaller seeds or even seed abortion. ChIP assay showed that SDG711-mediated H3K27me3 changed significantly in genes related to endosperm development, and SDG711 can directly bind to the gene body region of several starch synthesis genes and amylase genes. In addition, H3K4me3 and H3K9ac modifications also cooperate with H3K27me3 to regulate the development of the endosperm. Our results suggest that the crosstalk between SDG711-mediated H3K27me3 and H3K4me3, and H3K9ac are involved in starch accumulation to control normal seed development.


2021 ◽  
Vol 7 (3) ◽  
pp. eabc8873
Author(s):  
Peng Qin ◽  
Guohua Zhang ◽  
Binhua Hu ◽  
Jie Wu ◽  
Weilan Chen ◽  
...  

Long-distance transport of the phytohormone abscisic acid (ABA) has been studied for ~50 years, yet its mechanistic basis and biological significance remain very poorly understood. Here, we show that leaf-derived ABA controls rice seed development in a temperature-dependent manner and is regulated by defective grain-filling 1 (DG1), a multidrug and toxic compound extrusion transporter that effluxes ABA at nodes and rachilla. Specifically, ABA is biosynthesized in both WT and dg1 leaves, but only WT caryopses accumulate leaf-derived ABA. Our demonstration that leaf-derived ABA activates starch synthesis genes explains the incompletely filled and floury seed phenotypes in dg1. Both the DG1-mediated long-distance ABA transport efficiency and grain-filling phenotypes are temperature sensitive. Moreover, we extended these mechanistic insights to other cereals by observing similar grain-filling defects in a maize DG1 ortholog mutant. Our study demonstrates that rice uses a leaf-to-caryopsis ABA transport–based mechanism to ensure normal seed development in response to variable temperatures.


1993 ◽  
Vol 3 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Jill M. Farrant ◽  
N. W. Pammenter ◽  
Patricia Berjak

AbstractDevelopment of the highly desiccation-sensitive (recalcitrant) seeds of primarily one species, Avicennia marina, is reviewed and compared with the ontogeny of desiccation-tolerant (orthodox) seeds. A. marina seeds undergo no maturation drying and remain metabolically active throughout development, which grades almost imperceptibly into germination. While PGR control of histodifferentiation is essentially similar to that characterizing desiccation-tolerant seeds, the phase of growth and reserve deposition is characterized by exceedingly high cytokinin levels which, it is proposed, promote a sink for assimilate import. While some starch accumulation does occur, the predominant reserves are soluble sugars which are readily available for the immediate onset of seedling establishment upon shedding. ABA levels are negligible in the embryo tissues during seed maturation, but increase in the pericarp, which imposes a constraint upon germination until these outer coverings are sloughed or otherwise removed. The pattern of proteins synthesized remains qualitatively similar throughout seed development in A. marina, and no LEA proteins are produced. This suggests both that seedling establishment is independent of maturation proteins and that the absence of LEAs and desiccation sensitivity might be causally related. The study on A. marina reveals that for this recalcitrant seed-type, germination per se cannot be defined: rather, it is considered as the continuation of development temporarily constrained by the pericarp ABA levels. This leads to a reexamination of the role of rehydration as key event sensu stricto, in the germination processes in desiccation-tolerant (orthodox) seeds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jian Guo ◽  
Lingling Qu ◽  
Yifan Hu ◽  
Weiping Lu ◽  
Dalei Lu

Abstract Background Kernel development and starch formation are the primary determinants of maize yield and quality, which are considerably influenced by drought stress. To clarify the response of maize kernel to drought stress, we established well-watered (WW) and water-stressed (WS) conditions at 1–30 days after pollination (dap) on waxy maize (Zea mays L. sinensis Kulesh). Results Kernel development, starch accumulation, and activities of starch biosynthetic enzymes were significantly reduced by drought stress. The morphology of starch granules changed, whereas the grain filling rate was accelerated. A comparative proteomics approach was applied to analyze the proteome change in kernels under two treatments at 10 dap and 25 dap. Under the WS conditions, 487 and 465 differentially accumulated proteins (DAPs) were identified at 10 dap and 25 dap, respectively. Drought induced the downregulation of proteins involved in the oxidation–reduction process and oxidoreductase, peroxidase, catalase, glutamine synthetase, abscisic acid stress ripening 1, and lipoxygenase, which might be an important reason for the effect of drought stress on kernel development. Notably, several proteins involved in waxy maize endosperm and starch biosynthesis were upregulated at early-kernel stage under WS conditions, which might have accelerated endosperm development and starch synthesis. Additionally, 17 and 11 common DAPs were sustained in the upregulated and downregulated DAP groups, respectively, at 10 dap and 25 dap. Among these 28 proteins, four maize homologs (i.e., A0A1D6H543, B4FTP0, B6SLJ0, and A0A1D6H5J5) were considered as candidate proteins that affected kernel development and drought stress response by comparing with the rice genome. Conclusions The proteomic changes caused by drought were highly correlated with kernel development and starch accumulation, which were closely related to the final yield and quality of waxy maize. Our results provided a foundation for the enhanced understanding of kernel development and starch formation in response to drought stress in waxy maize.


2008 ◽  
Vol 35 (5) ◽  
pp. 382 ◽  
Author(s):  
Yong-Ling Ruan ◽  
Danny J. Llewellyn ◽  
Qing Liu ◽  
Shou-Min Xu ◽  
Li-Min Wu ◽  
...  

Successful seed development requires coordinated interaction of the endosperm and embryo. In most dicotyledonous seeds, the endosperm is crushed and absorbed by the expanding embryo in the later stages of seed development. Little is known about the metabolic interaction between the two filial tissues early in seed development. We examined the potential role of sucrose synthase (Sus) in the endosperm development of cotton. Sus was immunologically localised in the cellularising endosperm, but not in the heart-stage embryo at 10 days after anthesis. The activities of Sus and acid invertase were significantly higher in the endosperm than in the young embryos, which corresponded to a steep concentration difference in hexoses between the endosperm and the embryo. This observation indicates a role for the endosperm in generating hexoses for the development of the two filial tissues. Interestingly, Sus expression and starch deposition were spatially separated in the seeds. Silencing the expression of Sus in the endosperm using an RNAi approach led to the arrest of early seed development. Histochemical analyses revealed a significant reduction in cellulose and callose in the deformed endosperm cells of the Sus-suppressed seed. The data indicate a critical role of Sus in early seed development through regulation of endosperm formation.


Development ◽  
2021 ◽  
pp. dev.196378
Author(s):  
Zhiyuan He ◽  
Ting Zou ◽  
Qiao Xiao ◽  
Guoqiang Yuan ◽  
Miaomiao Liu ◽  
...  

Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.


Genetics ◽  
2021 ◽  
Author(s):  
Yonghui He ◽  
Qing Yang ◽  
Jun Yang ◽  
Yong-Fei Wang ◽  
Xiaoliang Sun ◽  
...  

Abstract Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.


2000 ◽  
Vol 21 (5) ◽  
pp. 455-467 ◽  
Author(s):  
Winfriede Weschke ◽  
Reinhard Panitz ◽  
Norbert Sauer ◽  
Qing Wang ◽  
Birgit Neubohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document