architectural protein
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 119 (1) ◽  
pp. e2116222119
Author(s):  
Alexey A. Gavrilov ◽  
Rinat I. Sultanov ◽  
Mikhail D. Magnitov ◽  
Aleksandra A. Galitsyna ◽  
Erdem B. Dashinimaev ◽  
...  

Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA–DNA proximity ligation techniques has been developed. However, neither of these techniques examines proteins involved in RNA–chromatin interactions. Here, we introduce RedChIP, a technique combining RNA–DNA proximity ligation and chromatin immunoprecipitation for identifying RNA–chromatin interactions mediated by a particular protein. Using antibodies against architectural protein CTCF and the EZH2 subunit of the Polycomb repressive complex 2, we identify a spectrum of cis- and trans-acting ncRNAs enriched at Polycomb- and CTCF-binding sites in human cells, which may be involved in Polycomb-mediated gene repression and CTCF-dependent chromatin looping. By providing a protein-centric view of RNA–DNA interactions, RedChIP represents an important tool for studies of nuclear ncRNAs.


2021 ◽  
Author(s):  
Parminder Kaur ◽  
Ryan Barnes ◽  
Hai Pan ◽  
Ariana C Detwiler ◽  
Ming Liu ◽  
...  

Abstract The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2–TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein–DNA structures, and monitoring of DNA–DNA and DNA–RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA–dsDNA, dsDNA–ssDNA and dsDNA–ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.


2021 ◽  
Author(s):  
David H Tse ◽  
Nicole A Becker ◽  
Robert T Young ◽  
Wilma K Olson ◽  
Justin P Peters ◽  
...  

Abstract Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.


2021 ◽  
Vol 499 (1) ◽  
pp. 257-259
Author(s):  
D. V. Fursenko ◽  
P. G. Georgiev ◽  
A. N. Bonchuk

Abstract CTCF belongs to a large family of transcription factors with clusters of C2H2-type zinc finger domains (C2H2 proteins) and is a main architectural protein in mammals. Human CTCF has a homodimerizing unstructured domain at the N-terminus which is involved in long-distance interactions. To test the presence of similar N-terminal domains in other human C2H2 proteins, a yeast two-hybrid system was used. In total, the ability of unstructured N-terminal domains to homodimerize was investigated for six human C2H2 proteins with an expression profile similar to CTCF. The data indicate the lack of the homodimerization ability of these domains. On the other hand, three C2H2 proteins containing the structured domain DUF3669 at the N-terminus demonstrated homo- and heterodimerization activity.


Author(s):  
Olga Kyrchanova ◽  
Natalia Klimenko ◽  
Nikolay Postika ◽  
Artem Bonchuk ◽  
Nikolay Zolotarev ◽  
...  

2021 ◽  
Author(s):  
David H. Tse ◽  
Nicole A. Becker ◽  
Robert T. Young ◽  
Wilma K. Olson ◽  
Justin P. Peters ◽  
...  

Architectural proteins alter the shape of DNA, often by distorting the double helix and introducing sharp kinks that relieve strain in tightly-bent DNA structures. Here we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from E. coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.


2021 ◽  
Author(s):  
Olga Kyrchanova ◽  
Natalia Klimenko ◽  
Nikolay Postika ◽  
Artem Bonchuk ◽  
Nickolay Zolotarev ◽  
...  

CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, null mutations in the dCTCF gene were found to result in death during the stage of pharate adults, which failed to eclose from their pupal case. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears to be limited to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not essential for the functional activity of dCTCF in vivo.


2020 ◽  
Author(s):  
Marat Sabirov ◽  
Olga Kyrchanova ◽  
Galina V. Pokholkova ◽  
Artem Bonchuk ◽  
Natalia Klimenko ◽  
...  

AbstractThe architectural protein Pita is critical for Drosophila embryogenesis and predominantly binds to gene promoters and insulators. In particular, Pita is involved in the organization of boundaries between regulatory domains that controlled the expression of three hox genes in the Bithorax complex (BX-C). The best-characterized partner for Pita is the BTB/POZ-domain containing protein CP190. Using in vitro pull-down analysis, we precisely mapped two unstructured regions of Pita that interact with the BTB domain of CP190. Then we constructed transgenic lines expressing the Pita protein of the wild-type and mutant variants lacking CP190-interacting regions. The expression of the mutant protein completely complemented the null pita mutation. ChIP-seq experiments with wild-type and mutant embryos showed that the deletion of the CP190-interacting regions did not significantly affect the binding of the mutant Pita protein to most chromatin sites. However, the mutant Pita protein does not support the ability of multimerized Pita sites to prevent cross-talk between the iab-6 and iab-7 regulatory domains that activate the expression of Abdominal-B (Abd-B), one of the genes in the BX-C. The recruitment of a chimeric protein consisting of the DNA-binding domain of GAL4 and CP190-interacting region of the Pita to the GAL4 binding sites on the polytene chromosomes of larvae induces the formation of a new interband, which is a consequence of the formation of open chromatin in this region. These results suggested that the interaction with CP190 is required for the primary Pita activities, but other architectural proteins may also recruit CP190 in flies expressing only the mutant Pita protein.Author SummaryPita is required for Drosophila development and binds specifically to a long motif in active promoters and insulators. Pita belongs to the Drosophila family of zinc-finger architectural proteins, which also includes Su(Hw) and the conserved among higher eukaryotes CTCF. The architectural proteins maintain the active state of regulatory elements and the long-distance interactions between them. The CP190 protein is recruited to chromatin through interaction with the architectural proteins. Here we mapped two regions in Pita that are required for interaction with the CP190 protein. We have demonstrated that CP190-interacting region of the Pita can maintain nucleosome-free open chromatin and is critical for Pita-mediated enhancer blocking activity. At the same time, interaction with CP190 is not required for the in vivo function of the mutant Pita protein, which binds to the same regions of the genome as the wild-type protein. Unexpectedly, we found that CP190 was still associated with the most of genome regions bound by the mutant Pita protein, which suggested that other architectural proteins were continuing to recruit CP190 to these regions. These results support a model in which the regulatory elements are composed of combinations of binding sites that interact with several architectural proteins with similar functions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Artem Bonchuk ◽  
Sofia Kamalyan ◽  
Sofia Mariasina ◽  
Konstantin Boyko ◽  
Vladimir Popov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document