scholarly journals 591 Chromatin architectural protein CTCF regulates terminal keratinocyte differentiation in the developing epidermis and hair follicles

2021 ◽  
Vol 141 (5) ◽  
pp. S102
Author(s):  
G. Chen ◽  
N.V. Botchkareva ◽  
E. Rozhkova ◽  
A. Sharov ◽  
V.A. Botchkarev
2020 ◽  
Vol 21 (2) ◽  
pp. 566 ◽  
Author(s):  
Marie-Claire Méchin ◽  
Hidenari Takahara ◽  
Michel Simon

Deimination, also known as citrullination, corresponds to the conversion of the amino acid arginine, within a peptide sequence, into the non-standard amino acid citrulline. This post-translational modification is catalyzed by a family of calcium-dependent enzymes called peptidylarginine deiminases (PADs). Deimination is implicated in a growing number of physiological processes (innate and adaptive immunity, gene regulation, embryonic development, etc.) and concerns several human diseases (rheumatoid arthritis, neurodegenerative diseases, female infertility, cancer, etc.). Here, we update the involvement of PADs in both the homeostasis of skin and skin diseases. We particularly focus on keratinocyte differentiation and the epidermal barrier function, and on hair follicles. Indeed, alteration of PAD activity in the hair shaft is responsible for two hair disorders, the uncombable hair syndrome and a particular form of inflammatory scarring alopecia, mainly affecting women of African ancestry.


Author(s):  
Rashid Saif ◽  
Tania Mahmood ◽  
Aniqa Ejaz ◽  
Saeeda Zia

The Pashmina and Barbari are two famous goat breeds found in the wide areas of the Indo-Pak region. Pashmina is famous for its long hair-fiber (Cashmere) production while Barbari is not-selected for this trait. So, the mRNA expression profiling in the skin samples of both breeds would be an attractive and judicious approach for detecting putative genes involved in this valued trait. Here, we performed differential gene expression analysis on publicly available RNA-Seq data from both breeds. Out of 44,617,994 filtered reads of Pashmina and 55,995,999 of Barbari which are 76.48% and 73.69% mapped to the ARS1 reference transcriptome assembly respectively. A pairwise comparison of both breeds resulted in 47,159 normalized expressed transcripts while 8,414 transcripts are differentially expressed above the significant threshold. Among these, 4,788 are upregulated in Pashmina while 3,626 transcripts are upregulated in Barbari. Fifty-nine transcripts harbor 57 genes including 32 LOC genes and 24 are annotated genes which were selected on the basis of TMM counts > 500. Genes with ectopic expressions other than uncharacterized and LOC symbol genes are Keratins (KRT) and Keratin Associated Proteins (KRTAPs), CystatinA&6, TCHH, SPRR4, PPIA, SLC25A4, S100A11, DMKN, LOR, ANXA2, PRR9 and SFN. All of these genes are likely to be involved in keratinocyte differentiation, sulfur matrix proteins, dermal papilla cells, hair follicles proliferation, hair curvature, wool fiber diameter, hair transition, hair shaft differentiation and its keratinization. These differentially expressed reported genes are critically valuable for enhancing the quality and quantity of the pashmina fiber and overall breed improvement. This study will also provide important information on hair follicle differentiation for further enrichment analyses and introducing this valued trait to other goat breeds as well.


1996 ◽  
Vol 109 (13) ◽  
pp. 3035-3045
Author(s):  
T. Magnaldo ◽  
Y. Barrandon

We have isolated, by subtractive and differential hybridization from a library constructed from keratinocyte colony-forming cells (K-CFCs), a cDNA coding for the rat CD24 (nectadrin, heat stable antigen). CD24, a glycoprotein thought to be involved in cell-cell adhesion and signalling, is highly expressed in keratinocytes located in the bulge area of the rat vibrissa which contains the most K-CFCs. CD24 is also expressed in the outer epithelial sheath of human hair follicles and in glabrous epidermis. However, its expression is not restricted to K-CFCs as demonstrated by cell sorting experiments, and it is thus not a specific marker of clonogenic keratinocytes. Rather, its preferential distribution in keratinocytes located in the most innervated area of the rat vibrissal follicle, i.e., the bulge, suggests that is function could be related to the tactile role of the hair follicle.


2015 ◽  
Vol 83 (8) ◽  
pp. 3026-3034 ◽  
Author(s):  
Abdul G. Lone ◽  
Erhan Atci ◽  
Ryan Renslow ◽  
Haluk Beyenal ◽  
Susan Noh ◽  
...  

A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressingStaphylococcus aureus, and the pattern ofS. aureusbiofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MSE).S. aureusbiofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P< 0.01) more antioxidant proteins of both epidermal andS. aureusorigin, consistent with elevated H2O2concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact fromS. aureusin response to colonization of the skin surface.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
S Chon ◽  
R Earland ◽  
A Pappas ◽  
KA Reynertson ◽  
MD Southall

Sign in / Sign up

Export Citation Format

Share Document