regolith layer
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 13 (15) ◽  
pp. 3017
Author(s):  
Xiang Zhang ◽  
Wenmin Lv ◽  
Lei Zhang ◽  
Jinhai Zhang ◽  
Yangting Lin ◽  
...  

Most previous studies tend to simplify the lunar regolith as a homogeneous medium. However, the lunar regolith is not completely homogeneous, because there are weak reflections from the lunar regolith layer. In this study, we examined the weak heterogeneity of the lunar regolith layer using a self-organization model by matching the reflection pattern of both the lunar regolith layer and the top of the ejecta layer. After a series of numerical experiments, synthetic results show great consistency with the observed Chang’E-4 lunar penetrating radar data and provide some constraints on the range of controlling parameters of the exponential self-organization model. The root mean square permittivity perturbation is estimated to be about 3% and the correlation distance is about 5–10 cm. Additionally, the upper layer of ejecta has about 1–2 rocks per square meter, and the rock diameter is about 20–30 cm. These parameters are helpful for further study of structural characteristics and the evolution process of the lunar regolith. The relatively small correlation distance and root mean square perturbation in the regolith indicate that the regolith is mature. The weak reflections within the regolith are more likely to be due to structural changes rather than material composition changes.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Keigo Hongo ◽  
Hiroaki Toh ◽  
Atsushi Kumamoto

Abstract Site-dependent bulk permittivities of the lunar uppermost media with thicknesses of tens to hundreds meters were estimated based on the data from Lunar Radar Sounder onboard the Selenological and Engineering Explorer (SELENE). It succeeded in sounding almost all over the Moon’s surface in a frequency range around 5 MHz to detect subsurface reflectors beneath several lunar maria. However, it is necessary to estimate the permittivity of the surface regolith of the Moon in order to determine the actual depths to those reflectors instead of apparent depths assuming a speed of light in the vacuum. In this study, we determined site-dependent bulk permittivities by two-layer models consisting of a surface regolith layer over a half-space with uniform, but different physical properties from the layer above. Those models consider the electrical conductivity as well as the permittivity, whose trade-off was resolved by utilizing the correlation between iron–titanium content and measured physical properties of lunar rock samples. Distribution of the iron–titanium content on the Moon’s surface had already been derived by spectroscopic observation from SELENE as well. Four lunar maria, Mare Serenitatis, Oceanus Procellarum, Mare Imbrium, and Mare Crisium, were selected as regions of evident reflectors, where we estimated the following four physical properties of each layer, i.e., bulk permittivity, porosity, loss tangent and electrical conductivity to conclude the actual depths of the reflectors are approximately 200 m on average. The bulk permittivity ranges from 2.96 at Mare Imbrium to 6.37 at Oceanus Procellarum, whereas the porosity takes the values between 1.8 and 41.1% in the respective maria. It was found that although the bulk permittivity of the four lunar maria differs from a mare to a mare, it shows a good correlation with their composition, viz., their iron–titanium content.


2020 ◽  
Author(s):  
Keigo Hongo ◽  
Hiroaki Toh ◽  
Atsushi Kumamoto

Abstract Site-dependent bulk permittivities of the lunar uppermost media with thicknesses of tens to hundreds meters were estimated based on the data from Lunar Radar Sounder onboard the Selenological and Engineering Explorer (SELENE). It succeeded in sounding almost all over the Moon’s surface in a frequency range around 5 MHz to detect subsurface reflectors beneath several lunar maria. However, it is necessary to estimate the permittivity of the surface regolith of the Moon in order to determine the actual depths to those reflectors instead of apparent depths assuming a speed of light in the vacuum. In this study, we determined site-dependent bulk permittivities by two-layer models consisting of a surface regolith layer over a half-space with uniform but different physical properties from the layer above. Those models consider the electrical conductivity as well as the permittivity, whose trade-off was resolved by utilizing the correlation between iron-titanium content and measured physical properties of lunar rock samples. Distribution of the iron-titanium content on the Moon’s surface had already been derived by spectroscopic observation from SELENE as well. Four lunar maria, Mare Serenitatis, Oceanus Procellarum, Mare Imbrium, and Mare Crisium, were selected as regions of evident reflectors, where we estimated the following four physical properties of each layer, i.e., bulk permittivity, porosity, loss tangent and electrical conductivity to conclude the actual depths of the reflectors are approximately 200m on average. The bulk permittivity ranges from 2.96 at Mare Imbrium to 6.37 at Oceanus Procellarum, whereas the porosity takes the values between 1.8% to 41.1% in the respective maria. It was found that although the bulk permittivity of the four lunar maria differs from a mare to a mare, it shows a good correlation with their composition, viz., their iron-titanium content.


2020 ◽  
Author(s):  
Keigo Hongo ◽  
Hiroaki Toh ◽  
Atsushi Kumamoto

Abstract Site-dependent bulk permittivities of the lunar uppermost media with thicknesses of tens to hundreds meters were estimated based on the data from Lunar Radar Sounder onboard the Selenological and Engineering Explorer (SELENE). It succeeded in sounding almost all over the Moon’s surface in a frequency range around 5 MHz to detect subsurface reflectors beneath several lunar maria. However, it is necessary to estimate the permittivity of the surface regolith of the Moon in order to determine the actual depths to those reflectors instead of apparent depths assuming a speed of light in the vacuum. In this study, we determined site-dependent bulk permittivities by two-layer models consisting of a surface regolith layer over a half-space with uniform but different physical properties from the layer above. Those models consider the electrical conductivity as well as the permittivity, whose trade-off was resolved by utilizing the correlation between iron-titanium content and measured physical properties of lunar rock samples. Distribution of the iron-titanium content on the Moon’s surface had already been derived by spectroscopic observation from SELENE as well. Four lunar maria, Mare Serenitatis, Oceanus Procellarum, Mare Imbrium, and Mare Crisium, were selected as regions of evident reflectors, where we estimated the following four physical properties of each layer, i.e., bulk permittivity, porosity, loss tangent and electrical conductivity to conclude the actual depths of the reflectors are approximately 200m on average. The bulk permittivity ranges from 2.96 at Mare Imbrium to 6.37 at Oceanus Procellarum, whereas the porosity takes the values between 1.8% to 41.1% in the respective maria. It was found that although the bulk permittivity of the four lunar maria differs from a mare to a mare, it shows a good correlation with their composition, viz., their iron-titanium content.


2020 ◽  
Author(s):  
Keigo Hongo ◽  
Hiroaki Toh ◽  
Atsushi Kumamoto

Abstract Site-dependent bulk permittivities of the lunar uppermost media were estimated based on the data from Lunar Radar Sounder onboard the Selenological and Engineering Explorer (SELENE). It succeeded in sounding almost all over the Moon’s surface in a frequency range around 5 MHz to detect subsurface reflectors beneath several lunar maria such as Mare Imbrium. However, it is necessary to estimate the permittivity of the surface regolith of the Moon in order to determine the actual depths to those reflectors instead of apparent depths assuming a speed of light in the vacuum. In this study, we determined site-dependent bulk permittivities by two-layer models consisting of a surface regolith layer over a half-space with uniform but different physical properties from the layer above. Those models consider the electrical conductivity as well as the permittivity, whose trade-off was resolved by utilizing the correlation between titanium content and measured physical properties of lunar rock samples. Distribution of the titanium content on the Moon’s surface had already been derived by spectroscopic observation from SELENE as well.Four lunar maria, viz., Mare Serenitatis, Oceanus Procellarum, Mare Imbrium, and Mare Crisium, were selected as regions of evident reflectors, where we estimated the following four physical properties of each layer, i.e., bulk permittivity, porosity, loss tangent and electrical conductivity to conclude the actual depths of the reflectors are approximately 200m on average. The bulk permittivity ranges from 2.96 at Mare Imbrium to 6.37 at Oceanus Procellarum, whereas the porosity takes the values between 1.8% to 41.1% in the respective maria. It was found that although the bulk permittivity of the four lunar maria differs from a mare to a mare, it shows a good correlation with their composition, viz., their titanium content.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ken Ishiyama ◽  
Atsushi Kumamoto

Abstract Elucidation of the subsurface structure in the Smythii basin on the moon is important for understanding lunar volcanic history. Two lava units (Units 1 and 2) cover this basin. The spatial subsurface structure below Unit 2 is unknown. We used SELENE/Lunar Radar Sounder data to identify four subsurface boundaries at 130, 190, 300, and 420 m depths. The radar is reflected at the paleo-regolith layer sandwiched among lava flows, which is supported by a simple radar reflection/transmission model. The spatial distribution of subsurface boundaries demonstrates the deposition of Unit 2 on the subsidence in Unit 1. A simple loading model explained the maximum depth of subsidence (~500 m) and indicated that lithospheric thickness in the Smythii basin was ~24 km at 3.95 Gya. The estimated growth rate of the lithosphere was ~60 km/Ga during 3.95 to 3.07 Gya. After the formation of the Smythii basin at ~4.11 Gya, Unit 1 and Unit 2 deposited with eruption rates of ~8.4 × 10−4 km3/yr by 3.95 Gya and ~7.5 × 10−6 km3/yr by 3.07 Gya respectively. The timing of decline in volcanic activity in the Smythii basin differs from that for the lunar nearside maria, indicating the diversity of volcanism in various lunar areas.


2019 ◽  
Author(s):  
Takeshi Tsuji ◽  
Taichi Kawamura ◽  
Akito Araya ◽  
Yuichiro Nagata ◽  
Yoshiaki Ishihara ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Chunyu Ding ◽  
Yan Su ◽  
Shuguo Xing ◽  
Shun Dai ◽  
Yuan Xiao ◽  
...  

In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain). When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.


2014 ◽  
Vol 101 ◽  
pp. 1-11 ◽  
Author(s):  
Zhiguo Meng ◽  
Yi Xu ◽  
Yongchun Zheng ◽  
Yongchao Zhu ◽  
Yu Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document