steady state cycling
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 7 (1) ◽  
pp. e000907
Author(s):  
Giovanni Polsinelli ◽  
Angelo Rodio ◽  
Bruno Federico

IntroductionThe measurement of heart rate is commonly used to estimate exercise intensity. However, during endurance performance, the relationship between heart rate and oxygen consumption may be compromised by cardiovascular drift. This physiological phenomenon mainly consists of a time-dependent increase in heart rate and decrease in systolic volume and may lead to overestimate absolute exercise intensity in prediction models based on heart rate. Previous research has established that cardiovascular drift is correlated to the increase in core body temperature during prolonged exercise. Therefore, monitoring body temperature during exercise may allow to quantify the increase in heart rate attributable to cardiovascular drift and to improve the estimate of absolute exercise intensity. Monitoring core body temperature during exercise may be invasive or inappropriate, but the external auditory canal is an easily accessible alternative site for temperature measurement.Methods and analysisThis study aims to assess the degree of correlation between trends in heart rate and in ear temperature during 120 min of steady-state cycling with intensity of 59% of heart rate reserve in a thermally neutral indoor environment. Ear temperature will be monitored both at the external auditory canal level with a contact probe and at the tympanic level with a professional infrared thermometer.Ethics and disseminationThe study protocol was approved by an independent ethics committee. The results will be submitted for publication in academic journals and disseminated to stakeholders through summary documents and information meetings.


2021 ◽  
Vol 11 (3) ◽  
pp. 1004
Author(s):  
Borut Fonda ◽  
Jan Babič ◽  
Nejc Šarabon

Leg movement during cycling is constrained to the pedal/crank path and predominantly occurs in a sagittal plane. Medial-lateral force (FML) applied to the pedals is considered as a waste and does not contribute to the pedaling. The aim of this study was to examine the changes in FML across different cadences and workloads, and to examine the correlation with lateral knee movement (Q-angle). Twenty-two cyclists completed six trials at three workloads (2, 2.5 and 3 W/kg) and three cadences (75, 85, 95 rpm). Forces were recorded from the force pedal mounted to the left side. Absolute and normalized (to the peak total force) FML were compared across conditions and cross-correlation with Q-angle was calculated. Absolute FML was significantly different across cadences and workloads (p < 0.05) with higher absolute FML at higher cadence. There was no significant difference in normalized FML across the three cadences. There was a significant decrease in normalized FML (~10 N) at higher workloads. Statistically significant correlations were found between the FML and Q-angle (R = 0.70–0.77). The results demonstrate the link between the FML and Q-angle in healthy pain-free cyclists during stationary cycling. It has also been observed that smaller normalized magnitude of the FML is present when the force effectiveness is increased.


2020 ◽  
Vol 52 (7S) ◽  
pp. 190-191
Author(s):  
Billie K. Alba ◽  
Katherine M. Mitchell ◽  
Karleigh E. Bradbury ◽  
Beau R. Yurkevicius ◽  
Kirsten E. Coffman ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4037 ◽  
Author(s):  
Mikhail Tokarev

A full scale lab prototype of an adsorptive heat transformer (AHT), consisting of two adsorbers, an evaporator, and a condenser, was designed and tested in subsequent cycles of heat upgrading. The composite LiCl/SiO2 was used as an adsorbent with methanol as an adsorbtive substance under boundary temperatures of TL/TM/TH = −30/20/30 °C. Preliminary experiments demonstrated the feasibility of the tested AHT in continuous heat generation, with specific power output of 520 W/kg over 1–1.5 h steady-state cycling. The formal and experimental thermal efficiency of the tested rig were found to be 0.5 and 0.44, respectively. Although the low potential heat to be upgraded was available for free from a natural source, the electric efficiency of the prototype was found to be as high as 4.4, which demonstrates the promising potential of the “heat from cold” concept. Recommendations for further improvements are also outlined and discussed in this paper.


Sports ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Mark Willems ◽  
Mehmet Şahin ◽  
Tim Berendsen ◽  
Matthew Cook

New Zealand blackcurrant (NZBC) extract enhanced exercise-induced fat oxidation and 16.1 km cycling time trial (TT) in normobaric normoxia. The effect of NZBC extract on physiological and metabolic responses was examined during steady state cycling and a 16.1 km TT in normobaric hypoxia. This study used a randomized, double-blind, crossover design. Eleven healthy male cyclists (age: 38 ± 11 y, height: 179 ± 4 cm, body mass: 76 ± 8 kg, V ˙ O2max: 47 ± 5 mL·kg−1·min−1, mean ± SD) ingested NZBC extract (600 mg·day−1 CurraNZ® containing 210 mg anthocyanins) or a placebo (600 mg microcrystalline cellulose M102) for seven days (washout 14 days) and performed a steady state cycling test (3 × 10 min at 45%, 55% and 65% V ˙ O2max) followed by a 16.1 km TT at a simulated altitude of ~2500 meters (~15% of O2). Indirect calorimetry was used to measure substrate oxidation during steady state cycling. Intake of NZBC extract had no effect on blood glucose and lactate, heart rate, substrate oxidation, and respiratory exchange ratio during steady state cycling at 45%, 55% and 65% V ˙ O2max, and on 16.1 km TT performance (placebo: 1685 ± 92 s, NZBC extract: 1685 ± 99 s, P = 0.97). Seven days intake of New Zealand blackcurrant extract does not change exercise-induced metabolic responses and 16.1 km cycling time trial performance for moderately endurance-trained men in normobaric hypoxia.


2018 ◽  
Vol 21 (10) ◽  
pp. 1085-1089 ◽  
Author(s):  
Nigel Harris ◽  
Andrew Kilding ◽  
Shivani Sethi ◽  
Fabrice Merien ◽  
Jinger Gottschall

2018 ◽  
Vol 50 (5S) ◽  
pp. 333
Author(s):  
Adam J. Luippold ◽  
Karleigh E. Bradbury ◽  
Katherine M. Mitchell ◽  
Beau R. Yurkevicius ◽  
John H. Sellers ◽  
...  

2018 ◽  
Vol 50 (5S) ◽  
pp. 332-333
Author(s):  
Robert W. Kenefick ◽  
Karleigh E. Bradbury ◽  
John H. Sellers ◽  
Adam J. Luippold ◽  
Katherine M. Mitchell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document