scholarly journals The Studies in Constructing Yeast Cell Factories for the Production of Fatty Acid Alkyl Esters

Author(s):  
Yang Zhang ◽  
Xiao Guo ◽  
Huaiyi Yang ◽  
Shuobo Shi

Fatty acid alkyl esters have broad applications in biofuels, lubricant formulas, paints, coatings, and cosmetics. Traditionally, these esters are mostly produced through unsustainable and energy-intensive processes. In contrast, microbial production of esters from renewable and sustainable feedstocks may provide a promising alternative and has attracted widespread attention in recent years. At present, yeasts are used as ideal hosts for producing such esters, due to their availability for high-density fermentation, resistance to phage infection, and tolerance against toxic inhibitors. Here, we summarize recent development on the biosynthesis of alkyl esters, including fatty acid ethyl esters (FAEEs), fatty acid short-branched chain alkyl esters (FASBEs), and wax esters (WEs) by various yeast cell factories. We focus mainly on the enzyme engineering strategies of critical wax ester synthases, and the pathway engineering strategies employed for the biosynthesis of various ester products. The bottlenecks that limit productivity and their potential solutions are also discussed in this review.

2017 ◽  
Vol 68 (2) ◽  
pp. 195 ◽  
Author(s):  
J. A. Cayuela

The regulation of The European Union for olive oil and olive pomace established the limit of 35 mg·kg-1 for fatty acids ethyl ester contents in extra virgin olive oils, from grinding seasons after 2016. In this work, predictive models have been established for measuring fatty acid ethyl and methyl esters and to measure the total fatty acid alkyl esters based on near infrared spectroscopy (NIRS), and used successfully for this purpose. The correlation coefficients from the external validation exercises carried out with these predictive models ranged from 0.84 to 0.91. Different classification tests using the same models for the thresholds 35 mg·kg-1 for fatty acid ethyl esters and 75 mg·kg-1 for fatty acid alkyl esters provided success percentages from 75.0% to 95.2%.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Zhang ◽  
Jie Peng ◽  
Huimin Zhao ◽  
Shuobo Shi

Abstract Background Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. Results We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. Conclusion We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
J. K. Ntumba ◽  
A. Mulula ◽  
K. T. Kashishi ◽  
M. N. Mifundu ◽  
R. Robiette ◽  
...  

Vegetable oil-based fuels are promising alternative fuels for diesel and light fuel engines because of their environmental and economic strategic advantages. In this study, Ongokea gore oil (OGO) and its fully hydrogenated oil were transesterified by means of ethanol in the presence of sodium ethoxide. Fatty acid ethyl esters (FAEE) products were confirmed by 1H NMR and characterized by physical-chemical methods in accordance with the ASTM D 6751 and AFNOR M 15-009 specifications for biodiesels and light biofuels. These methods concern determination of color, density, viscosity, flash and pour points, ash, water and sulfur contents, and corrosion on copper. It was found that pure fatty acid ethyl esters of Ongokea gore oil (B100) and its hydrogenated oil (B100-H) meet standard requirements for most of the biodiesel characteristics studied. Only the kinematic viscosity and density values were outside recommended biodiesel standard limits which makes them unsuitable for use in diesel engines. In accordance with the AFNOR M 15-009 specifications of light fuels, they can be used in light fuel engines. Physical-chemical properties of B20, a FAEE blend in petrodiesel, are within the limits prescribed for petrodiesel standards. In brief, Ongokea gore seeds, a nonedible and high-oil-producing feedstock, are suitable starting material for production of light biofuel. The latter blends in petrodiesel can be used as fuel in diesel engines.


2019 ◽  
Vol 96 (7) ◽  
pp. 805-823 ◽  
Author(s):  
Robert O. Dunn ◽  
Victor T. Wyatt ◽  
Karen Wagner ◽  
Helen Ngo ◽  
Megan E. Hums

2004 ◽  
Vol 70 (12) ◽  
pp. 7119-7125 ◽  
Author(s):  
Rainer Kalscheuer ◽  
Heinrich Luftmann ◽  
Alexander Steinbüchel

ABSTRACT The bifunctional wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase (WS/DGAT) is the key enzyme in storage lipid accumulation in the gram-negative bacterium Acinetobacter calcoaceticus ADP1, mediating wax ester, and to a lesser extent, triacylglycerol (TAG) biosynthesis. Saccharomyces cerevisiae accumulates TAGs and steryl esters as storage lipids. Four genes encoding a DGAT (Dga1p), a phospholipid:diacylglycerol acyltransferase (Lro1p) and two acyl-coenzyme A:sterol acyltransferases (ASATs) (Are1p and Are2p) are involved in the final esterification steps in TAG and steryl ester biosynthesis in this yeast. In the quadruple mutant strain S. cerevisiae H1246, the disruption of DGA1, LRO1, ARE1, and ARE2 leads to an inability to synthesize storage lipids. Heterologous expression of WS/DGAT from A. calcoaceticus ADP1 in S. cerevisiae H1246 restored TAG but not steryl ester biosynthesis, although high levels of ASAT activity could be demonstrated for WS/DGAT expressed in Escherichia coli XL1-Blue in radiometric in vitro assays with cholesterol and ergosterol as substrates. In addition to TAG synthesis, heterologous expression of WS/DGAT in S. cerevisiae H1246 resulted also in the accumulation of fatty acid ethyl esters as well as fatty acid isoamyl esters. In vitro studies confirmed that WS/DGAT is capable of utilizing a broad range of alcohols as substrates comprising long-chain fatty alcohols like hexadecanol as well as short-chain alcohols like ethanol or isoamyl alcohol. This study demonstrated the highly unspecific acyltransferase activity of WS/DGAT from A. calcoaceticus ADP1, indicating the broad biocatalytic potential of this enzyme for biotechnological production of a large variety of lipids in vivo in prokaryotic as well as eukaryotic expression hosts.


2020 ◽  
Author(s):  
Yang Zhang ◽  
Jie Peng ◽  
Huimin Zhao ◽  
Shuobo Shi

Abstract BackgroundProduction of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70 % biomass as lipids, Rhodosporidium toruloides represents an attractive host for FAEEs production. ResultsWe first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase /acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs in shake-flask fermentation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, by fed-batch fermentation in a 1-L fermenter, the titer of FAEEs reached 9.2 g/L. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing.ConclusionWe achieved the highest FAEEs production in yeast with a final titer of 9.2 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid derived molecules.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongjin J. Zhou ◽  
Nicolaas A. Buijs ◽  
Zhiwei Zhu ◽  
Jiufu Qin ◽  
Verena Siewers ◽  
...  
Keyword(s):  

2014 ◽  
Vol 111 (9) ◽  
pp. 1740-1747 ◽  
Author(s):  
Shuobo Shi ◽  
Juan Octavio Valle-Rodríguez ◽  
Verena Siewers ◽  
Jens Nielsen

2016 ◽  
Vol 113 (39) ◽  
pp. 10848-10853 ◽  
Author(s):  
Peng Xu ◽  
Kangjian Qiao ◽  
Woo Suk Ahn ◽  
Gregory Stephanopoulos

Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.


Sign in / Sign up

Export Citation Format

Share Document