coagulation kernel
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Marina A. Ferreira ◽  
Jani Lukkarinen ◽  
Alessia Nota ◽  
Juan J. L. Velázquez

AbstractWe consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.


Author(s):  
Debdulal Ghosh ◽  
Jayanta Paul ◽  
Jitendra Kumar

The spatially inhomogeneous coagulation-condensation process is an interesting topic of study as the phenomenon’s mathematical aspects mostly undiscovered and has multitudinous empirical applications. In this present exposition, we exhibit the existence of a continuous solution for the corresponding model with the following \emph{singular} type coagulation kernel: \[K(x,y)~\le~\frac{\left( x + y\right)^\theta}{\left(xy\right)^\mu}, ~~\text{for} ~x, y \in (0,\infty), \text{where}~ \mu \in \left[0,\tfrac{1}{2}\right] \text{ and } ~\theta \in [0, 1].\] The above-mentioned form of the coagulation kernel includes several practical-oriented kernels. Finally, uniqueness of the solution is also investigated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiao Jiang ◽  
Tat Leung Chan

Purpose The purpose of this study is to investigate the aerosol dynamics of the particle coagulation process using a newly developed weighted fraction Monte Carlo (WFMC) method. Design/methodology/approach The weighted numerical particles are adopted in a similar manner to the multi-Monte Carlo (MMC) method, with the addition of a new fraction function (α). Probabilistic removal is also introduced to maintain a constant number scheme. Findings Three typical cases with constant kernel, free-molecular coagulation kernel and different initial distributions for particle coagulation are simulated and validated. The results show an excellent agreement between the Monte Carlo (MC) method and the corresponding analytical solutions or sectional method results. Further numerical results show that the critical stochastic error in the newly proposed WFMC method is significantly reduced when compared with the traditional MMC method for higher-order moments with only a slight increase in computational cost. The particle size distribution is also found to extend for the larger size regime with the WFMC method, which is traditionally insufficient in the classical direct simulation MC and MMC methods. The effects of different fraction functions on the weight function are also investigated. Originality Value Stochastic error is inevitable in MC simulations of aerosol dynamics. To minimize this critical stochastic error, many algorithms, such as MMC method, have been proposed. However, the weight of the numerical particles is not adjustable. This newly developed algorithm with an adjustable weight of the numerical particles can provide improved stochastic error reduction.


2021 ◽  
Vol 415 ◽  
pp. 132756
Author(s):  
Michał Łepek ◽  
Agata Fronczak ◽  
Piotr Fronczak

2019 ◽  
Vol 150 (4) ◽  
pp. 1805-1825 ◽  
Author(s):  
Prasanta Kumar Barik ◽  
Ankik Kumar Giri ◽  
Philippe Laurençot

AbstractGlobal weak solutions to the continuous Smoluchowski coagulation equation (SCE) are constructed for coagulation kernels featuring an algebraic singularity for small volumes and growing linearly for large volumes, thereby extending previous results obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular, linear growth at infinity of the coagulation kernel is included and the initial condition may have an infinite second moment. Furthermore, all weak solutions (in a suitable sense) including the ones constructed herein are shown to be mass-conserving, a property which was proved in Norris (1999) under stronger assumptions. The existence proof relies on a weak compactness method in L1 and a by-product of the analysis is that both conservative and non-conservative approximations to the SCE lead to weak solutions which are then mass-conserving.


2019 ◽  
Vol 97 ◽  
pp. 02033
Author(s):  
Vladimir Smirnov ◽  
Evgenij Korolev

The problem of stability of colloids recently begins to attract extra attention in construction materials science. This is due to numerous attempts to employ different kind of nanoscale modifiers for production of building materials with enhanced operational properties. Problems of stability and coagulation in colloidal dispersions are studied for several decades, and numerous results were already obtained within framework of Smoluchowski coagulation theory. In the present work we have performed numerical study of the flocculation process and compared the results with well-known ones. It was shown that even for complex pairwise potential the kinetics of number density for isolated particles is not very different from the kinetics which corresponds to constant coagulation kernel. However, for number density of many-particle aggregates we have observed number of peculiarities, including semi-periodic behavior.


2016 ◽  
Vol 16 (19) ◽  
pp. 12441-12455 ◽  
Author(s):  
Ryo Onishi ◽  
Axel Seifert

Abstract. This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015) is updated by using the direct numerical simulation (DNS) results for the Taylor-microscale-based Reynolds number (Reλ) up to 1140. The DNS results for particles with a small Stokes number (St) show a consistent Reynolds-number dependence of the so-called clustering effect with the locality theory proposed by Onishi et al. (2015). It is confirmed that the present Onishi kernel is more robust for a wider St range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is then compared with the Ayala–Wang kernel (Ayala et al., 2008a; Wang et al., 2008). At low and moderate Reynolds numbers, both kernels show similar values except for r2 ∼ r1, for which the Ayala–Wang kernel shows much larger values due to its large turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between the two kernels. The Ayala–Wang kernel increases for the autoconversion region (r1, r2 < 40 µm) and for the accretion region (r1 < 40 and r2 > 40 µm; r1 > 40 and r2 < 40 µm) as Reλ increases. In contrast, the Onishi kernel decreases for the autoconversion region and increases for the rain–rain self-collection region (r1, r2 > 40 µm). Stochastic collision–coalescence equation (SCE) simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE with the Ayala–Wang kernel (SCE-Ayala) and that with the present Onishi kernel (SCE-Onishi) are compared with results from the Lagrangian Cloud Simulator (LCS; Onishi et al., 2015), which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent results with the LCS results for small Reλ. The two SCE simulations, however, show different Reynolds-number dependences, indicating possible large differences in atmospheric turbulent clouds with large Reλ.


2016 ◽  
Author(s):  
Ryo Onishi ◽  
Axel Seifert

Abstract. This study investigates the Reynolds-number dependence of turbulence enhancement on the collision growth of cloud droplets. The Onishi turbulent coagulation kernel proposed in Onishi et al. (2015) is updated by using the direct numerical simulation (DNS) results for the Taylor-microscale-based Reynolds number (Reλ) up to 1,140. The DNS results for particles with a small Stokes number (St) show a consistent Reynolds-number dependence of the so-called clustering effect with the locality theory proposed by Onishi et al. (2015). It is confirmed that the present Onishi kernel is more robust for a wider St range and has better agreement with the Reynolds-number dependence shown by the DNS results. The present Onishi kernel is then compared with the Ayala-Wang kernel (Ayala et al. (2008a); Wang et al. (2008)). At low and moderate Reynolds numbers both kernels show similar values except for r2 ∼ r1, for which the Ayala-Wang kernel shows much larger values due to its large turbulence enhancement on collision efficiency. A large difference is observed for the Reynolds-number dependences between the two kernels. The Ayala-Wang kernel increases for the autoconversion region (r1, r2 < 40 μm) and for the accretion region (r1 < 40 μm and r2 > 40 μm; r1 > 40 μm and r2 < 40 μm) as Reλ increases. In contrast, the Onishi kernel decreases for the autoconversion region and increases for the rain-rain self-collection region (r1, r2 > 40 μm). Stochastic collision-coalescence equation (SCE) simulations are also conducted to investigate the turbulence enhancement on particle size evolutions. The SCE with the Ayala-Wang kernel (SCE-Ayala) and that with the present Onishi kernel (SCE-Onishi) are compared with results from the Lagrangian Cloud Simulator (LCS, Onishi et al. (2015)), which tracks individual particle motions and size evolutions in homogeneous isotropic turbulence. The SCE-Ayala and SCE-Onishi kernels show consistent results with the LCS results for small Reλ. The two SCE simulations, however, show different Reynolds-number dependences, indicating possible large differences in atmospheric turbulent clouds with large Reλ.


Sign in / Sign up

Export Citation Format

Share Document