aromatic stabilization
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Dariusz Szczepanik

Very recently, Liddle and coworkers extended the range of aromaticity to a record seventh row of the periodic table by successful isolation of the crystalline actinide cluster 3 containing at its heart the σ-aromatic tri-thorium ring. In this study we prove that the authors have misinterpreted the experimental Raman spectrum of 3, which eventually led to the wrong conclusions about the role of the σ-aromatic tri-thorium bonding in the synthesized cluster. We demonstrate that the thorium-thorium bond in 3 is not very different from the already known extremely weak actinide-actinide bonds, and the marginal σ-aromatic stabilization in the Th3 ring makes it hardly distinguishable from ordinary non-aromatic rings. Also, we show that the multicenter charge-shift bonding in the Th3Cl6 cage is a vital factor that determines the uniqueness and remarkable thermodynamic stability of 3. By clarifying the misleading conclusions of the original Nature paper and drawing special attention to the essential stabilizing role of actinide-halogen charge-shift bonding, this study may have broader implications for understanding the chemistry of actinides and future attempts to design and synthesize new stable actinide complexes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ranita Pal ◽  
Arpita Poddar ◽  
Pratim Kumar Chattaraj

Atomic clusters lie somewhere in between isolated atoms and extended solids with distinctly different reactivity patterns. They are known to be useful as catalysts facilitating several reactions of industrial importance. Various machine learning based techniques have been adopted in generating their global minimum energy structures. Bond-stretch isomerism, aromatic stabilization, Rener-Teller effect, improved superhalogen/superalkali properties, and electride characteristics are some of the hallmarks of these clusters. Different all-metal and nonmetal clusters exhibit a variety of aromatic characteristics. Some of these clusters are dynamically stable as exemplified through their fluxional behavior. Several of these cluster cavitands are found to be agents for effective confinement. The confined media cause drastic changes in bonding, reactivity, and other properties, for example, bonding between two noble gas atoms, and remarkable acceleration in the rate of a chemical reaction under confinement. They have potential to be good hydrogen storage materials and also to activate small molecules for various purposes. Many atomic clusters show exceptional opto-electronic, magnetic, and nonlinear optical properties. In this Review article, we intend to highlight all these aspects.


Author(s):  
José C. S. Costa ◽  
Ricardo M. Campos ◽  
Luís M. S. S. Lima ◽  
M. A. V. Ribeiro da Silva ◽  
Luís M. N. B. F. Santos

2021 ◽  
Author(s):  
Karnjit Parmar ◽  
Christa S. Blaquiere ◽  
Brianna Lukan ◽  
Sydnie Gengler ◽  
Michel Gravel

As the next neutral structure following Hückels rule, a planar and aromatic [10]annulene is ideal to study the link between ring size and aromaticity. However, the puckered geometry of the parent [10]annulene suggests that the aromatic stabilization energy is not sufficient to overcome the ring strain that exists when the system is forced into planarity. It has been shown computationally that this ring strain can be alleviated through the addition of two or more cyclopropane rings to the periphery, thereby creating theoretically aromatic structures. An alternative strategy to eliminating the issue of ring strain was demonstrated experimentally with the successful preparation of the highly aromatic 1,6-didehydro[10]annulene. However, the system rapidly cyclizes at -40°C to a naphthalene diradical due to the close proximity of the in-plane p-orbitals present in the system. Here we show that cyclopropanating one side of the unstable annulene successfully prevents the destabilizing cross-ring interaction while maintaining a highly aromatic structure. Remarkably, the formed [10]annulene is bench stable and can be stored for extended periods of time.<br>


2021 ◽  
Author(s):  
Karnjit Parmar ◽  
Christa S. Blaquiere ◽  
Brianna Lukan ◽  
Sydnie Gengler ◽  
Michel Gravel

As the next neutral structure following Hückels rule, a planar and aromatic [10]annulene is ideal to study the link between ring size and aromaticity. However, the puckered geometry of the parent [10]annulene suggests that the aromatic stabilization energy is not sufficient to overcome the ring strain that exists when the system is forced into planarity. It has been shown computationally that this ring strain can be alleviated through the addition of two or more cyclopropane rings to the periphery, thereby creating theoretically aromatic structures. An alternative strategy to eliminating the issue of ring strain was demonstrated experimentally with the successful preparation of the highly aromatic 1,6-didehydro[10]annulene. However, the system rapidly cyclizes at -40°C to a naphthalene diradical due to the close proximity of the in-plane p-orbitals present in the system. Here we show that cyclopropanating one side of the unstable annulene successfully prevents the destabilizing cross-ring interaction while maintaining a highly aromatic structure. Remarkably, the formed [10]annulene is bench stable and can be stored for extended periods of time.<br>


2021 ◽  
Vol 143 (5) ◽  
pp. 2403-2412
Author(s):  
Michael Jirásek ◽  
Michel Rickhaus ◽  
Lara Tejerina ◽  
Harry L. Anderson

ACS Nano ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 15766-15775
Author(s):  
Anja Haags ◽  
Alexander Reichmann ◽  
Qitang Fan ◽  
Larissa Egger ◽  
Hans Kirschner ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Vinh Ngoc Huynh ◽  
Michael Leitner ◽  
Aditya Bhattacharyya ◽  
Lisa Uhlstein ◽  
Peter Kreitmeier ◽  
...  

Abstract Reversing the regioselectivity of the renowned Diels–Alder reaction by overriding the usual thermodynamic and kinetic governing factors has always been a formidable challenge to synthetic organic chemists. Anthracenes are well-known to undergo [4 + 2]-cycloadditions with dienophiles at their 9,10-positions (central ring) over 1,4-positions (terminal ring) guided by the relative aromatic stabilization energy of the two possible products, and also by harboring the largest orbital coefficients of the highest occupied molecular orbital (HOMO) at the 9,10-positions. We, herein, report a 1,4-selective [4 + 2]-cycloaddition strategy of 9,10-unsubstituted anthracenes by installing electron-donating substituents on the terminal rings which is heretofore unprecedented to the best of our knowledge. The developed synthetic strategy does not require any premeditated engagement of the 9,10-positions either with any sterically bulky or electron-withdrawing substituents and allows delicate calibration of the regioselectivity by modulating the electron-donating strength of the substituents on the terminal rings. Likewise, the regioselective functionalization of the terminal anthracene ring in electrophilic substitution reactions is demonstrated. A mechanistic rationale is offered with the aid of detailed computational studies, and finally, synthetic applications are presented.


2020 ◽  
Author(s):  
Anja Haags ◽  
Alexander Reichmann ◽  
Qitang Fan ◽  
Larissa Egger ◽  
Hans Kirschner ◽  
...  

We revisit the question of kekulene’s aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene’s highest occupied molecular orbital by photoelectron tomography. In agreement with a recent aromaticity assessment of kekulene based solely on C–C bond lengths, we conclude that the π-conjugation of kekulene is better described by the Clar model rather than a superaromatic model. Thus, by exploiting the capabilities of photoemission tomography, we shed light on the question which consequences aromaticity holds for the frontier electronic structure of a π-conjugated molecule.<br>


Sign in / Sign up

Export Citation Format

Share Document