iron protoporphyrin
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

2022 ◽  
Vol 15 (1) ◽  
pp. 60
Author(s):  
Helenita C. Quadros ◽  
Mariana C. B. Silva ◽  
Diogo R. M. Moreira

Plasmodium has evolved to regulate the levels and oxidative states of iron protoporphyrin IX (Fe-PPIX). Antimalarial endoperoxides such as 1,2,4-trioxane artemisinin and 1,2,4-trioxolane arterolane undergo a bioreductive activation step mediated by heme (FeII-PPIX) but not by hematin (FeIII-PPIX), leading to the generation of a radical species. This can alkylate proteins vital for parasite survival and alkylate heme into hematin–drug adducts. Heme alkylation is abundant and accompanied by interconversion from the ferrous to the ferric state, which may induce an imbalance in the iron redox homeostasis. In addition to this, hematin–artemisinin adducts antagonize the spontaneous biomineralization of hematin into hemozoin crystals, differing strikingly from artemisinins, which do not directly suppress hematin biomineralization. These hematin–drug adducts, despite being devoid of the peroxide bond required for radical-induced alkylation, are powerful antiplasmodial agents. This review addresses our current understanding of Fe-PPIX as a bioreductive activator and molecular target. A compelling pharmacological model is that by alkylating heme, endoperoxide drugs can cause an imbalance in the iron homeostasis and that the hematin–drug adducts formed have strong cytocidal effects by possibly reproducing some of the toxifying effects of free Fe-PPIX. The antiplasmodial phenotype and the mode of action of hematin–drug adducts open new possibilities for reconciliating the mechanism of endoperoxide drugs and for malaria intervention.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ken Ellis-Guardiola ◽  
Brendan J. Mahoney ◽  
Robert T. Clubb

Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron–protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb’s heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb’s iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.


2018 ◽  
Vol 293 (43) ◽  
pp. 16623-16634 ◽  
Author(s):  
Rahul Yadav ◽  
Emily E. Scott

Human cytochrome P450 enzymes are membrane-bound heme-containing monooxygenases. As is the case for many heme-containing enzymes, substitution of the metal in the center of the heme can be useful for mechanistic and structural studies of P450 enzymes. For many heme proteins, the iron protoporphyrin prosthetic group can be extracted and replaced with protoporphyrin containing another metal, but human membrane P450 enzymes are not stable enough for this approach. The method reported herein was developed to endogenously produce human membrane P450 proteins with a nonnative metal in the heme. This approach involved coexpression of the P450 of interest, a heme uptake system, and a chaperone in Escherichia coli growing in iron-depleted minimal medium supplemented with the desired trans-metallated protoporphyrin. Using the steroidogenic P450 enzymes CYP17A1 and CYP21A2 and the drug-metabolizing CYP3A4, we demonstrate that this approach can be used with several human P450 enzymes and several different metals, resulting in fully folded proteins appropriate for mechanistic, functional, and structural studies including solution NMR.


2017 ◽  
Vol 313 (4) ◽  
pp. R340-R346 ◽  
Author(s):  
Kenneth R. Olson ◽  
Yan Gao ◽  
Faihaan Arif ◽  
Kanika Arora ◽  
Shivali Patel ◽  
...  

Fluorescence spectroscopy and microscopy have been used extensively to monitor biomolecules, especially reactive oxygen species (ROS) and, more recently, reactive sulfide (RSS) species. Nearly all fluorophores are either excited by or emit light between 450 and 550 nm, which is similar to the absorbance of heme proteins and metal-centered porphyrins. Here we examined the effects of catalase (Cat), reduced and oxidized hemoglobin (Hb and metHb), albumin (alb), manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP), iron protoporphyrin IX (hemin), and copper protoporphyrin IX (CuPPIX) on the fluorescence properties of fluorescein. We also examined the effects of catalase and MnTBAP on fluorophores for ROS (dichlorofluorescein, DCF), polysulfides (3′,6′-di( O-thiosalicyl)fluorescein, SSP4), and H2S (7-azido-4-methylcoumarin, AzMC) previously activated by H2O2, a mixed polysulfide (H2Sn, n = 1–7) and H2S, respectively. All except albumin concentration dependently inhibited fluorophore fluorescence and absorbed light between 450 and 550 nm, suggesting that the inhibitory effect was physical not catalytic. Catalase inhibition of fluorescein fluorescence was unaffected by sodium azide, dithiothreitol, diamide, tris(2-carboxyethyl)phosphine (TCEP), or iodoacetate, supporting a physical inhibitory mechanism. Catalase and TBAP augmented, then inhibited DCF fluorescence, but only inhibited SSP4 and AzMC fluorescence indicative of a substrate-specific catalytic oxidation of DCF and nonspecific fluorescence inhibition of all three fluorophores. These results suggest caution must be exercised when using any fluorescent tracers in the vicinity of metal-centered porphyrins.


Sign in / Sign up

Export Citation Format

Share Document