scholarly journals Potential Study of Liquefaction in the Downstream Area of Jono Oge-Paneki River, Central Sulawesi

2021 ◽  
Vol 930 (1) ◽  
pp. 012084
Author(s):  
A Widyatmoko ◽  
D Legono ◽  
H C Hardiyatmo

Abstract Liquefaction during an earthquake is likely to occur in the quaternary geological layer of sediment. Based on the geological process, the mainland of Central Sulawesi was initially a sea lifted upward to become land Palu-Koro fault. Therefore, the land is basically of basic alluvium soil formation, sand deposits, and loose rock. The earthquake in Central Sulawesi in September 2018 was the cause of liquefaction, one of which was in the Jono Oge area, where most of the flow entered the Paneki river. This paper analyzed the potential for recurrent liquefaction by considering the soil structure and water level conditions. The authors focused on the downstream areas of the Paneki River, which passes through Langaleso and Kabobona Village. The data used is N-SPT data, followed by examining post-liquefaction settlement and lateral displacement. This study uses several variations of the earthquake magnitude and potential earthquakes that may occur. The results of observations indicate that the soil conditions of the study area are cohesionless soil. The liquefaction analysis shows that most of the research areas have liquefaction, land subsidence, and lateral displacement potential.

1987 ◽  
Vol 14 (4) ◽  
pp. 498-509 ◽  
Author(s):  
Thambirajah Balendra ◽  
Arthur C. Heidebrecht

A new foundation factor is proposed to account for the soil amplification effects in the calculation of seismic base shear, as specified in the 1985 edition of the National Building Code of Canada. Three types of soil conditions are considered, viz., stiff soil, deep cohesionless soil, and soft clay deposits. In order to capture the resonance effect at the site–structure period, the foundation factor is expressed as a function of the ratio between fixed base period of the building and site period. The proposed foundation factor takes into account both the site–structure period coincidence effect and soil–structure interaction. The application of the proposed foundation factor is illustrated for three particular sites that have been subjected to an actual recorded earthquake. Key words: foundation factor, site effect, soil–structure interaction, buildings, seismic, shear, design, code of practice.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Siul A. Ruiz ◽  
Samuel Bickel ◽  
Dani Or

AbstractEarthworm activity modifies soil structure and promotes important hydrological ecosystem functions for agricultural systems. Earthworms use their flexible hydroskeleton to burrow and expand biopores. Hence, their activity is constrained by soil hydromechanical conditions that permit deformation at earthworm’s maximal hydroskeletal pressure (≈200kPa). A mechanistic biophysical model is developed here to link the biomechanical limits of earthworm burrowing with soil moisture and texture to predict soil conditions that permit bioturbation across biomes. We include additional constraints that exclude earthworm activity such as freezing temperatures, low soil pH, and high sand content to develop the first predictive global map of earthworm habitats in good agreement with observed earthworm occurrence patterns. Earthworm activity is strongly constrained by seasonal dynamics that vary across latitudes largely due to soil hydromechanical status. The mechanistic model delineates the potential for earthworm migration via connectivity of hospitable sites and highlights regions sensitive to climate.


2013 ◽  
Vol 479-480 ◽  
pp. 1139-1143
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Wen Ya Chung ◽  
Chen Hui Tsai ◽  
Ting Chen ◽  
...  

Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Pratap Singh ◽  
Rishi Pal Singh ◽  
Yudhvir Singh ◽  
Jasgurpreet Singh Chohan ◽  
Shubham Sharma ◽  
...  

Wireless sensor networks (WSNs) especially with sensor nodes communicating with each other in medium other than air have been naive area of research since the last few years. In comparison to underwater communication, wireless underground sensor networks (WUSNs) are now being used in a large number of applications ranging from environmental observation, estimating chances of earthquake, communicating in underground tunnels or mines, and infrastructure monitoring to soil monitoring for agricultural purposes. In spite of all such promising applications, due to harsh and dynamically changing soil characteristics including soil type, water content in soil, and soil temperature, underground communication with conventional electromagnetic (EM) wave-based technology could not prove to be feasible for long-distance communication. Alternatively, due to magnetic permeability of soil being similar to air, magnetic induction- (MI-) based approach was adopted using magnetic coils as antenna for sensor nodes. Subsequently, MI waveguide and 3D coil mechanisms were considered to improve the system efficiency. Attributing to different characteristics of underlying transmission channels, communication protocols as well as architecture of MI-based WUSNS (MI-WUSNs) have been developed with different approaches. In this review paper, in addition to the latest advancements made for MI-WUSNs, closely associated areas of MI-WUSNs have also been explored. Additionally, research areas which are still open to be worked upon have been detailed out.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


Author(s):  
Young-Sun Jang ◽  
Kwang-Ho Joo ◽  
Chong-Hak Kim

The SSI (Soil-Structure Interaction) analyses are being performed for the APR1400 (Advanced Power Reactor 1400MWe, Old name - KNGR ; Korean Next Generation Reactor) design, because the APR1400 is developed as a Standard Nuclear Power Plant concept enveloping suitable soil conditions. For the SSI analyses, SASSI program which adopts the Flexible Volume Method is used. In the SSI analyses, there can be uncertainties by Bond and De-bond problem between the structure and lateral soil elements. According to ASCE Standard 4, one method to address this concern is to assume no connectivity between structure and lateral soil over the upper half of the embedment of 20ft (6m), whichever is less. This study is performed as a part of the parametric analyses for the APR1400 seismic analyses to address the concern of the potential embedment effect on the in-structure response spectra due to connectivity between structure and lateral soil. In this study, 4 model cases are analyzed to check the potential embedment effect — Full connection, 20ft no connectivity which is defined as a minimum De-bond depth of the soil in ASCE Standard 4 and 26.5ft no connectivity between structure and lateral soil over the upper half of the embedment. Last one is full no connection for only reference. The in-structure response spectra are compared with the response spectra without considering the embedment effect.


1975 ◽  
Vol 8 (1_suppl) ◽  
pp. 227-232 ◽  
Author(s):  
R Scott Russell ◽  
R Q Cannell ◽  
M J Goss

Direct drilling affects the pore size distribution in the soil, the distribution of organic debris on and within the soil, and the soil structure. These changes in turn affect the development of the root system of the crop, with consequential changes on its nutrient supply and early growth.


1994 ◽  
Vol 56 (1-4) ◽  
pp. 145-149 ◽  
Author(s):  
A.G. Scott (INVITED)

Abstract Information available 20 years ago suggested that unusual soil conditions were needed to produce high radon concentrations in houses. Based on this belief, simple models were developed to predict house radon concentrations based on estimates of soil radium concentration and soil type (related to permeability). Recent radon-in-housing surveys show that clay soils, which cover much of North America, are radon-prone. The permeability of these soils is not controlled by the soil type, but by the fracture patterns that develop as the soil dries out. Realistic prediction models must take the macroscopic soil structure into account. They must also deal with the effect of the rapid variations in driving force produced by wind velocity variations. The interaction between house and soil is complex, and simple models cannot give realistic results. Many people live in apartment buildings, and are exposed to radon released from building materials. Better models are needed for this source to help develop better controls. Many radon-prone areas have been identified by house surveys, so modelling is now needed only to explain what we know. The priority task today is not prediction, but encouraging production of low-radon dwellings in known high-radon areas.


2020 ◽  
Vol 10 (23) ◽  
pp. 8357
Author(s):  
Ibrahim Oz ◽  
Sevket Murat Senel ◽  
Mehmet Palanci ◽  
Ali Kalkan

Reconnaissance studies performed after destructive earthquakes have shown that seismic performance of existing buildings, especially constructed on weak soils, is significantly low. This situation implies the negative effects of soil-structure interaction on the seismic performance of buildings. In order to investigate these effects, 40 existing buildings from Turkey were selected and nonlinear models were constructed by considering fixed-base and stiff, moderate and soft soil conditions. Buildings designed before and after Turkish Earthquake code of 1998 were grouped as old and new buildings, respectively. Different soil conditions classified according to shear wave velocities were reflected by using substructure method. Inelastic deformation demands were obtained by using nonlinear time history analysis and 20 real acceleration records selected from major earthquakes were used. The results have shown that soil-structure interaction, especially in soft soil cases, significantly affects the seismic response of old buildings. The most significant increase in drift demands occurred in first stories and the results corresponding to fixed-base, stiff and moderate cases are closer to each other with respect to soft soil cases. Distribution of results has indicated that effect of soil-structure interaction on the seismic performance of new buildings is limited with respect to old buildings.


1975 ◽  
Vol 85 (3) ◽  
pp. 385-393 ◽  
Author(s):  
N. M. Fisher ◽  
P. T. Gooderham ◽  
J. Ingram

SUMMARYAn experiment is described in which plots of a silt loam soil were compacted by ploughing and rotary cultivation when the moisture content was high. Kale and barley were grown on these plots in 2 years.Compaction of the soil was not as great as anticipated, but there were marked reductions due to wet cultivation in the dry-matter yield of kale and the vegetative growth of the young barley. Seed yield of barley was relatively unaffected, although there was a significant reduction due to wet ploughing in one year.The implication of these results for experimentation on the effects of soil structure on crop yield are discussed.


Sign in / Sign up

Export Citation Format

Share Document