autonomous voltage inverter
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 17)

H-INDEX

1
(FIVE YEARS 1)

Author(s):  
Ivan V. Viktorov ◽  
Vladimir M. Nikitin

The article considers a method of economical speed control of synchronous motor with permanent magnet excitation using autonomous voltage inverter. The method provides stable (without tilting) rotation of the rotor without using the rotor position sensor signals. An algorithm, which realizes minimal losses in the machine and in the inverter, is proposed. The assumption of insignificant influence of voltage drop in stator winding active resistance on processes in synchronous machine accepted in the analysis is confirmed by parameters of real motors from 7DVM series and results of the experiment. It is shown that the mode with cosφ = 1 differs little from the generally accepted mode with load angle θ = φ. The results of experimental verification of the method in electric drive with 7DVM250 motor of 150 kW power are presented, which showed high dynamic stability of the system in a wide range of speeds and loads and while maintaining the most economical energy exchange between the motor and inverter (that is with cosφ = 1).


2021 ◽  
Vol 288 ◽  
pp. 01054
Author(s):  
Valery Makarov ◽  
Veronika Zagirova ◽  
Georgii Vagapov

This paper deals with control algorithm of a two-level autonomous voltage inverter with pulsewidth modulation in forming test phase voltages for identification of parameters of a three-phase asynchronous motor. Necessary conversion is carried out, the laws of change of phase voltages of an autonomous inverter are obtained. The feasibility of using third order active Butterworth filters for determining first harmonics of phase voltages is shown. By means of computer simulation and experimental research, it is revealed that the required shapes of phase voltages can be implemented in a twolevel autonomous voltage inverter with pulse-width modulation, and the presence of Butterworth filters does not introduce significant distortion and allows to obtain necessary phase voltage shapes in the generalized electric machine.


Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 326-334
Author(s):  
A. V. Mashkin ◽  
S. B. Fedotovsky

When designing an automated electric drive, it is required to provide the necessary quality indicators of speed control as much as possible with the lowest energy losses in it. Assessment of dynamic losses in power semiconductor switches of autonomous voltage inverters (AVI) is due to the need to select optimal control algorithms for them in order to increase energy efficiency in frequency-controlled asynchronous electric drive systems. To solve the set tasks, the method of mathematical modeling has been used. With the help of the developed program, an assessment of the dynamic losses in a high-speed electric drive during its operation in a steady state has been made. At a typical modulation frequency f = 6,000 Hz, which with scalar control algorithms provides a sufficient degree of approximation of the generated phase voltage envelopes to a sinusoidal form, and the use of pulse-width control (WIR) algorithms, significant dynamic losses are observed in the switches of an autonomous voltage inverter. In the course of using the WID algorithms, an accurate approximation of the sinusoidal shape is not required, which makes it possible to reduce the modulation frequency and, as a consequence, reduce the amount of dynamic losses in the AVI keys. Therefore, a comparative assessment of dynamic losses has been carried out for the scheme of a classic three-phased AVI using the algorithms of unipolar and bipolar pulse-width control. The obtained simulation results have shown that the unipolar WID algorithm is more energy-saving compared to the bipolar WID algorithm when used in high-speed electric drives.


Author(s):  
Vasiliy A. Kubarev ◽  
Tatyana V. Bogdanovskaya ◽  
Oksana A. Ignatenko ◽  
Olga R. Gallyamova ◽  
Marina M. Kuchik

Author(s):  
М.П. Дунаев ◽  
С.У. Довудов

Научная статья посвящается моделированию однофазного двухуровневого инвертора напряжения (АИН) с частотно-импульсной модуляцией (ЧИМ). Модель реализована в среде MATLAB R2019a с использованием блоков из библиотеки Simulink/Simscape. Описаны основные элементы библиотеки Simscape. Разработана и смоделирована схема АИН с ЧИМ с использованием блоков из библиотеки Simscape. Полученные диаграммы АИН с ЧИМ показали, что частота в середине периода ЧИМ в 3 раза больше относительно краев. Также получены диаграммы тока и напряжения на активной и активно-индуктивной нагрузке АИН.


Author(s):  
Mihail Dunaev ◽  
Sarfaroz Dovudov

The work is devoted to modeling the circuit of a single-phase two-level the autonomous inverter of the voltage with pulse-width modulation in the MATLAB environment. Pulse-width modulation generation unit developed. Static characteristics of the converter are obtained. With the help of a set of measuring instruments, the efficiency of the сonverter is measured under nominal operating conditions.


Author(s):  
А. Denisov ◽  
Y. Denisov ◽  
O. Bursala

To stabilize the phase position of the working body of the robotics complex a single-circuit precision electric drive system was developed based on the principle of phase-locked loop. The direct-driven electric drive is made on the basis of brushless direct current motor, which is switched to synchronous mode with minimal discrepancy between the phases of the reference signals and the pulse speed sensor. The phase error signal is fed to the input of the PID controller, which controls the pulse width modulation of the impulses controlling the operation of the power transistors of the autonomous voltage inverter. In a static mode, the control system of the autonomous voltage inverter implements a sinusoidal law of the pulse width modulation of the output pulses. The PID controller and the control system of the autonomous voltage inverter are programmatically implemented on the basis of the controller. In the process of analysing of the stabilization accuracy, the synchronous motor is represented by a second-order linear link, which establishes a relation between the phase deviations of the motor rotor and the stator magnetic field. The autonomous voltage inverter is represented by a zero-order hold whose coefficient of amplification on amplitude is found by the results of the approximation of its output voltage using the Walsh-Fourier series. The analysis of the phase stabilization process is performed on the basis of the state variables method taking into account the perturbations at the moment of load using the program which implements the recurrent procedure. The settings of the PID controller are determined by the variation results when the moment of load changes. Their initial values ​​are determined as a result of optimizing the system in terms of operation speed considering the condition of finite duration processes. It is assumed that there is no moment of load perturbation. The procedure for setting the PID controller parameters to the optimal operation speed mode can also be performed on the basis of neural networks. As a result of the calculations, it was found that with an increase of the load moment by 5%, the maximum deviation of the rotor phase was 0.22 us and 0.03 us of minimum deviation respectively.


Sign in / Sign up

Export Citation Format

Share Document