scholarly journals SIMULATION OF A SINGLE-PHASE TWO- LEVEL AUTONOMOUS VOLTAGE INVERTER WITH THE PULSE WIDTH MODULATION

Author(s):  
Mihail Dunaev ◽  
Sarfaroz Dovudov

The work is devoted to modeling the circuit of a single-phase two-level the autonomous inverter of the voltage with pulse-width modulation in the MATLAB environment. Pulse-width modulation generation unit developed. Static characteristics of the converter are obtained. With the help of a set of measuring instruments, the efficiency of the сonverter is measured under nominal operating conditions.

Author(s):  
А. Denisov ◽  
Y. Denisov ◽  
O. Bursala

To stabilize the phase position of the working body of the robotics complex a single-circuit precision electric drive system was developed based on the principle of phase-locked loop. The direct-driven electric drive is made on the basis of brushless direct current motor, which is switched to synchronous mode with minimal discrepancy between the phases of the reference signals and the pulse speed sensor. The phase error signal is fed to the input of the PID controller, which controls the pulse width modulation of the impulses controlling the operation of the power transistors of the autonomous voltage inverter. In a static mode, the control system of the autonomous voltage inverter implements a sinusoidal law of the pulse width modulation of the output pulses. The PID controller and the control system of the autonomous voltage inverter are programmatically implemented on the basis of the controller. In the process of analysing of the stabilization accuracy, the synchronous motor is represented by a second-order linear link, which establishes a relation between the phase deviations of the motor rotor and the stator magnetic field. The autonomous voltage inverter is represented by a zero-order hold whose coefficient of amplification on amplitude is found by the results of the approximation of its output voltage using the Walsh-Fourier series. The analysis of the phase stabilization process is performed on the basis of the state variables method taking into account the perturbations at the moment of load using the program which implements the recurrent procedure. The settings of the PID controller are determined by the variation results when the moment of load changes. Their initial values ​​are determined as a result of optimizing the system in terms of operation speed considering the condition of finite duration processes. It is assumed that there is no moment of load perturbation. The procedure for setting the PID controller parameters to the optimal operation speed mode can also be performed on the basis of neural networks. As a result of the calculations, it was found that with an increase of the load moment by 5%, the maximum deviation of the rotor phase was 0.22 us and 0.03 us of minimum deviation respectively.


2021 ◽  
Vol 288 ◽  
pp. 01054
Author(s):  
Valery Makarov ◽  
Veronika Zagirova ◽  
Georgii Vagapov

This paper deals with control algorithm of a two-level autonomous voltage inverter with pulsewidth modulation in forming test phase voltages for identification of parameters of a three-phase asynchronous motor. Necessary conversion is carried out, the laws of change of phase voltages of an autonomous inverter are obtained. The feasibility of using third order active Butterworth filters for determining first harmonics of phase voltages is shown. By means of computer simulation and experimental research, it is revealed that the required shapes of phase voltages can be implemented in a twolevel autonomous voltage inverter with pulse-width modulation, and the presence of Butterworth filters does not introduce significant distortion and allows to obtain necessary phase voltage shapes in the generalized electric machine.


2015 ◽  
Vol 735 ◽  
pp. 294-298 ◽  
Author(s):  
Wei Ying Lai ◽  
Nurfarahin Onn ◽  
Collin Howe Hing Tang ◽  
Mohamed Hussein

Hydraulic actuators are widely employed for industrial automation for its high power over weight ratio, functionality in tough operating conditions and low cost. However, the dynamics of hydraulic systems are non-linear and the system subjected to non-smooth and discontinuous non-linearities due to directional change of valve opening, friction, valve overlap and changes of hydraulic pressure acted on valve spool. Taking into account the effect of nonlinear parameter variations such as bulk modulus, compressibility of oil or viscosity of oil, fuzzy logic approach is chosen. Fuzzy control can adapt the inconstant working condition and non-linear system alongside of its robustness. For PWM controlled hydraulic component such as solenoid valve, effective approximation of the flow properties in a solenoid valve is essential. In this paper, the effect of fuzzy logic approach incorporated on pulse width modulation (PWM) controlled hydraulic system is to be investigated and experimentally verified.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012051
Author(s):  
M. Z. Aihsan ◽  
A. M. Yusof ◽  
Hasliza A Rahim ◽  
B. Ismail ◽  
W. A. Mustafa ◽  
...  

Abstract This article organized in two sections where it compares the performance of single-phase inverters using various types of inductors with differences modulation technique of pulse width modulation (PWM). Not all inductors perform the same function, even the inductance value is the same. The study will investigate the capability of each inductor on its performance to convert the unfiltered AC voltage into filtered sinusoidal AC voltage. The drum core and toroidal core inductors were used in this investigation. For both inductors, the performance will be analyzed based on Bipolar and Unipolar switching schemes in a single unit H-bridge circuit. The validation of results are through experimental assessment only and it will be evaluating the shape of sinusoidal AC voltage and the content of total harmonics distortion in the AC voltage for both inductors.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 434 ◽  
Author(s):  
Xiumei Yue ◽  
Hongliang Wang ◽  
Xiaonan Zhu ◽  
Xinwei Wei ◽  
Yan-Fei Liu

Single-phase full-bridge transformerless topologies, such as the H5, H6, or the highly efficient and reliable inverter concept (HERIC) topologies, are commonly used for leakage current suppression for photovoltaic (PV) applications. The main derivation methodology of full-bridge topologies has been used based on both a DC-based decoupling model and an AC-based decoupling model. However, this methodology is not suited to the search for all possible topologies, and cannot verify whether they are inclusive. Part I of this paper will propose a new topology derivation methodology based on unipolar sinusoidal pulse width modulation (USPWM) to search all possible full-bridge topologies for leakage current suppression. First of all, a unified circuit model is proposed, instead of the DC- and AC-based models. Secondly, a mathematic method called the MN principle is then proposed to search for all possible topologies, and a derivation procedure is provided. It was verified that all existing topologies could be found using the proposed method; furthermore, seven new topologies were derived. The proposed topology derivation methodology is extended to search topologies under Double-Frequency USPWM (DFUSPWM). Twenty topologies under USPWM and four topologies under DFUSPWM have been derived.


Sign in / Sign up

Export Citation Format

Share Document