photospheric model
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 922 (2) ◽  
pp. 257
Author(s):  
Tyler Parsotan ◽  
Davide Lazzati

Abstract A complete understanding of gamma-ray bursts (GRBs) has been difficult to achieve, due to our incomplete knowledge of the radiation mechanism that is responsible for producing the prompt emission. This emission, which is detected in the first tens of seconds of the GRB, is typically dominated by hard X-ray and gamma-ray photons, although there have also been a few dozen prompt optical detections. These optical detections have the potential to discriminate between plausible prompt emission models, such as the photospheric and synchrotron shock models. In this work, we use an improved MCRaT code, which includes cyclo-synchrotron emission and absorption, to conduct radiative transfer calculations from optical to gamma-ray energies under the photospheric model. The calculations are conducted using a set of two-dimensional relativistic hydrodynamic long GRB jet simulations, consisting of a constant and a variable jet. We predict the correlations between the optical and gamma-ray light curves as functions of observer angle and jet variability, and find that there should be extremely dim optical prompt precursors for large viewing angles. Additionally, the detected optical emission originates from dense regions of the outflow, such as shock interfaces and the jet-cocoon interface. Our results also show that the photospheric model is unable to account for the current set of optical prompt detections that have been made and therefore additional radiative mechanisms are needed to explain these prompt optical observations. These findings show the importance of conducting global radiative transfer simulations using hydrodynamically calculated jet structures.


2020 ◽  
Vol 633 ◽  
pp. A136
Author(s):  
M. Gordovskyy ◽  
S. Shelyag ◽  
P. K. Browning ◽  
V. G. Lozitsky

Aims. The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe I spectral lines. Methods. We calculate Stokes I and V profiles of several Fe I lines based on a one-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on magnetohydrodynamic of magneto-convection. Results. It is shown that the developed Stokes V widths method can be used with various optical and near-infrared lines. Out of six lines considered in this study, Fe I 6301 line appears to be the most effective: it is sensitive to fields over ∼200 G and does not show any saturation up to ∼2 kG. Other lines considered can also be used for the photospheric field diagnostics with this method, however, only in narrower field value ranges, typically from about 100 G to 700–1000 G. Conclusions. The developed method can be a useful alternative to the classical magnetic line ratio method, particularly when the choice of lines is limited.


2019 ◽  
Vol 485 (1) ◽  
pp. 474-497 ◽  
Author(s):  
Björn Ahlgren ◽  
Josefin Larsson ◽  
Erik Ahlberg ◽  
Christoffer Lundman ◽  
Felix Ryde ◽  
...  

ABSTRACT It has been suggested that the prompt emission in gamma-ray bursts (GRBs) could be described by radiation from the photosphere in a hot fireball. Such models must be tested by directly fitting them to data. In this work we use data from the Fermi Gamma-ray Space Telescope and consider a specific photospheric model, in which the kinetic energy of a low-magnetization outflow is dissipated locally by internal shocks below the photosphere. We construct a table model with a physically motivated parameter space and fit it to time-resolved spectra of the 36 brightest Fermi GRBs with a known redshift. We find that about two-thirds of the examined spectra cannot be described by the model, as it typically underpredicts the observed flux. However, since the sample is strongly biased towards bright GRBs, we argue that this fraction will be significantly lowered when considering the full population. From the successful fits we find that the model can reproduce the full range of spectral slopes present in the sample. For these cases we also find that the dissipation consistently occurs at a radius of ∼1012 cm and that only a few per cent efficiency is required. Furthermore, we find a positive correlation between the fireball luminosity and the Lorentz factor. Such a correlation has been previously reported by independent methods. We conclude that if GRB spectra are due to photospheric emission, the dissipation cannot only be the specific scenario we consider here.


2018 ◽  
Vol 620 ◽  
pp. A23 ◽  
Author(s):  
K. Ohnaka ◽  
C. A. L. Morales Marín

Aim. The outer atmosphere of K giants shows thermally inhomogeneous structures consisting of the hot chromospheric gas and the cool molecular gas. We present spectro-interferometric observations of the multicomponent outer atmosphere of the well-studied K1.5 giant Arcturus (α Boo) in the CO first overtone lines near 2.3 μm. Methods. We observed Arcturus with the AMBER instrument at the Very Large Telescope Interferometer (VLTI) at 2.28–2.31 μm with a spectral resolution of 12 000 and at projected baselines of 7.3, 14.6, and 21.8 m. Results. The high spectral resolution of the VLTI/AMBER instrument allowed us to spatially resolve Arcturus in the individual CO lines. Comparison of the observed interferometric data with the MARCS photospheric model shows that the star appears to be significantly larger than predicted by the model. It indicates the presence of an extended component that is not accounted for by the current photospheric models for this well-studied star. We found out that the observed AMBER data can be explained by a model with two additional CO layers above the photosphere. The inner CO layer is located just above the photosphere, at 1.04 ± 0.02 R⋆, with a temperature of 1600 ± 400 K and a CO column density of 1020 ± 0.3 cm−2. On the other hand, the outer CO layer is found to be as extended as to 2.6 ± 0.2 R⋆ with a temperature of 1800 ± 100 K and a CO column density of 1019 ± 0.15 cm−2. Conclusions. The properties of the inner CO layer are in broad agreement with those previously inferred from the spatially unresolved spectroscopic analyses. However, our AMBER observations have revealed that the quasi-static cool molecular component extends out to 2–3 R⋆, within which region the chromospheric wind steeply accelerates.


2016 ◽  
Vol 25 (05) ◽  
pp. 1630014 ◽  
Author(s):  
Filippo Frontera ◽  
Lorenzo Amati ◽  
Ruben Farinelli ◽  
Simone Dichiara ◽  
Cristiano Guidorzi ◽  
...  

It is recognized that very likely the correlation between peak energy [Formula: see text] and bolometric intensity is intrinsic to GRBs. However, its physical origin is still debated. In this paper, we will discuss a possible interpretation of the correlation in the light of a GRB prompt emission spectral model, grbcomp, proposed in [L. Titarchuk, R. Farinelli, F. Frontera and L. Amati, Astrophys. J. 752 (2012) 116]. grbcomp is essentially a photospheric model for the prompt emission of GRBs. Its main ingredients are a thermal bath of soft seed photons and a subrelativistically expanding outflow plasma, consequence of the star explosion. The emerging spectrum is the result of two phases: first, up to the photospheric radius, Comptonization of a subrelativistic electron outflow with thermal bath of soft photons, then, convolution of the Comptonized photons in the first phase with a Green function. The result of this convolution is consistent with different physical processes, in particular Inverse Compton. grbcomp has been successfully tested using a significant sample of GRB time resolved spectra in the broad energy band from 2[Formula: see text]keV to 2[Formula: see text]MeV [F. Frontera, L. Amati, R. Farinelli, S. Dichiara, C. Guidorzi, R. Landi and L. Titarchuk, Astrophys. J. 779 (2013) 175].


2010 ◽  
Vol 6 (S272) ◽  
pp. 386-387
Author(s):  
Alicia Cruzado

AbstractFor a given photospheric model, we study the behavior of the BD as different density and temperature distributions in the circumstellar envelope are assumed. For non spherically symmetric envelopes, we analyze the variation of the BD when the angle of observation varies. The radiation transfer through the medium is handled by means of the Monte Carlo method. We calculate the flux emitted by the star+envelope system in a small wavelength range around the BD. The calculations are made under LTE conditions.


1980 ◽  
Vol 51 ◽  
pp. 53-54
Author(s):  
R.I. Kostik

AbstractThe shapes of weak fraunhofer lines, including their asymmetry, are explained by the influence of acoustic waves and granular motions. The following pattern of granula is adopted: the ascending (granular) and descending (intergranular) velocities V1 and V2 as well as the relevant temperatures T1 and T2 are maximum (minimum) at the center of granula (intergranula) and decrease (increase) sinusoidally outwards. There is also tangential outflow of the matter from the center of granula with the velocity V3 = const. and temperature T3 equal to the temperature of the photospheric model T0. The areas occupied by ascending, descending, and tangential motions are S1, S2, S3 respectively.The inhomogeneities caused by granulation are perturbed by the acoustic waves with the velocity amplitude V0 = 0.4 km/s and with the period T = 300 sec. The formula for the absorption line coefficient was derived, and the center-to-limb profiles of 11 weak fraunhofer lines were calculated. The comparison of calculated and observed line profiles have resulted in determining “best fit” values of V1, V2, V3, S1, S2, S3 and ΔT = T1 - T2. Tangential motions occupy the larger part of the solar surfaces S3 = 0.7, V3 ≈ 2.7 km/s, V ≈ 1.0 km/s, ΔT ranges between 270° - 400°.


Solar Physics ◽  
1972 ◽  
Vol 22 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Dietrich Labs ◽  
Heinz Neckel
Keyword(s):  

1958 ◽  
Vol 127 ◽  
pp. 96 ◽  
Author(s):  
R. G. Athay ◽  
R. N. Thomas

Sign in / Sign up

Export Citation Format

Share Document