modal radius
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 13 (10) ◽  
pp. 1865
Author(s):  
Gabriel Calassou ◽  
Pierre-Yves Foucher ◽  
Jean-François Léon

Stack emissions from the industrial sector are a subject of concern for air quality. However, the characterization of the stack emission plume properties from in situ observations remains a challenging task. This paper focuses on the characterization of the aerosol properties of a steel plant stack plume through the use of hyperspectral (HS) airborne remote sensing imagery. We propose a new method, based on the combination of HS airborne acquisition and surface reflectance imagery derived from the Sentinel-2 Multi-Spectral Instrument (MSI). The proposed method detects the plume footprint and estimates the surface reflectance under the plume, the aerosol optical thickness (AOT), and the modal radius of the plume. Hyperspectral surface reflectances are estimated using the coupled non-negative matrix factorization (CNMF) method combining HS and MSI data. The CNMF reduces the error associated with estimating the surface reflectance below the plume, particularly for heterogeneous classes. The AOT and modal radius are retrieved using an optimal estimation method (OEM), based on the forward model and allowing for uncertainties in the observations and in the model parameters. The a priori state vector is provided by a sequential method using the root mean square error (RMSE) metric, which outperforms the previously used cluster tuned matched filter (CTMF). The OEM degrees of freedom are then analysed, in order to refine the mask plume and to enhance the quality of the retrieval. The retrieved mean radii of aerosol particles in the plume is 0.125 μμm, with an uncertainty of 0.05 μμm. These results are close to the ultra-fine mode (modal radius around 0.1 μμm) observed from in situ measurements within metallurgical plant plumes from previous studies. The retrieved AOT values vary between 0.07 (near the source point) and 0.01, with uncertainties of 0.005 for the darkest surfaces and above 0.010 for the brightest surfaces.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 414 ◽  
Author(s):  
Mikhail Panchenko ◽  
Svetlana Terpugova ◽  
Victor Pol’kin ◽  
Valerii Kozlov ◽  
Dmitry Chernov

The paper presents the generalized empirical model of the aerosol optical characteristics in the lower 5-km layer of the atmosphere of West Siberia. The model is based on the data of long-term airborne sensing of the vertical profiles of the angular scattering coefficient, aerosol disperse composition, as well as the content of absorbing particles. The model provides for retrieval of the aerosol optical characteristics in visible and near IR wavelength ranges (complex refractive index, scattering and absorption coefficients, optical depth, single scattering albedo, and asymmetry factor of the scattering phase function). The main attention in the presented version of the model is given to two aspects: The study of the effect of the size spectrum of the absorbing substance in the composition of aerosol particles on radiative-relevant parameters (the single scattering albedo (SSA) and the asymmetry factor (AF)) and the consideration of different algorithms for taking into account the relative humidity of air. The ranges of uncertainty of SSA and AF at variations in the modal radius of the absorbing fraction at different altitudes in the troposphere are estimated.


2014 ◽  
Vol 7 (8) ◽  
pp. 8881-8926 ◽  
Author(s):  
M. R. Perrone ◽  
P. Burlizzi ◽  
F. De Tomasi ◽  
A. Chaikovsky

Abstract. The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC) to retrieve the vertical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork) sun/sky photometer measurements is investigated. The used lidar signals are at 355, 532 and 1064 nm. Aerosol extinction coefficient (αL), lidar ratio (LRL), and Ångstrom exponent (ÅL) profiles from LIRIC are compared with the corresponding profiles (α, LR, and Å) retrieved from a Constrained Iterative Inversion (CII) procedure to investigate the LIRIC retrieval ability. Then, an aerosol classification framework which relies on the use of a graphical framework and on the combined analysis of the Ångstrom exponent (at the 355 and 1064 nm wavelength pair, Å(355, 1064)) and its spectral curvature (ΔÅ = Å(355, 532)–Å(532, 1064)) is used to investigate the ability of LIRIC to retrieve vertical profiles of fine and coarse-mode particles. The Å-ΔÅ aerosol classification framework allows estimating the dependence on altitude of the aerosol fine modal radius and of the fine mode contribution to the whole aerosol optical thickness, as discussed in Perrone et al. (2014). The application of LIRIC to three different aerosol scenarios dealing with aerosol properties dependent on altitude has revealed that the differences between αL and α vary with the altitude and on average increase with the decrease of the lidar signal wavelength. It has also been found that the differences between ÅL and corresponding Å values vary with the altitude and the wavelength pair. The sensitivity of Ångstrom exponents to the aerosol size distribution which vary with the wavelength pair was responsible for these last results. The aerosol classification framework has revealed that the deviations between LIRIC and the corresponding CII-procedure retrieval products are due to the fact that LIRIC does not allow to the modal radius of fine mode particles to vary with the altitude. It is shown that this represents the main source of uncertainties in LIRIC results. The plot on the graphical framework of the Å-ΔÅ data points retrieved from the CII-procedure has indicated that the fine-mode-particle modal radius can vary with altitude when particles from different sources and/or from different advection routes contribute to the aerosol load. Analytical back trajectories combined with linear particle depolarization ratio profiles from lidar measurements at 355 nm and dust concentrations from the Barcelona Supercomputing Center-Dust REgional Atmospheric Model (BSC-DREAM) have been used to demonstrate the dependence on altitude of the aerosol properties.


2013 ◽  
Vol 6 (6) ◽  
pp. 10731-10759 ◽  
Author(s):  
G. Milinevsky ◽  
V. Danylevsky ◽  
V. Bovchaliuk ◽  
A. Bovchaliuk ◽  
Ph. Goloub ◽  
...  

Abstract. The paper presents an investigation of aerosol seasonal variations in several urban sites in the East European region. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008–2012 data from three urban ground-based AERONET sites in Ukraine (Kyiv, Kyiv-AO, and Lugansk) and one site in Belarus (Minsk), as well as on satellite POLDER instrument data for urban areas in Ukraine. Aerosol amount and optical thickness values exhibit peaks in the spring (April–May) and late summer (August), whereas minimum values are seen in late autumn over the Kyiv and Minsk sites. The results show that aerosol fine mode particles are most frequently detected during the spring and late summer seasons. The seasonal variation similarity in the two regions points to the resemblance in basic aerosol sources which are closely related to properties of aerosol particles. However the aerosol amount and properties change noticeably from year to year and from region to region. The analysis of seasonal aerosol optical thickness variations over the urban sites in the eastern and western parts of Ukraine according to both ground-based and POLDER data exhibits the same traits. In particular, over Kyiv, the values of the Angstrom exponent are lower in April of 2011 than in 2009 and 2010, while aerosol optical thickness values are almost the same, which can be explained by an increase in the amount of coarse mode particles in the atmosphere, such as Saharan dust. Moreover, the coarse mode particles prevailed over suburbs and the center of Kyiv during a third of all available days of observation in 2012. In general, the fine and coarse mode particles' modal radii averaged over 2008–2012 range from 0.1 to 0.2 μm and 2 to 5 μm, respectively, during the period from April to September. The single scattering albedo and refractive index values of these particles correspond to a mix of urban-industrial, biomass burning, and dust aerosols. In addition, strongly absorbing particles were observed in the period from October to March, and the modal radius of fine and coarse mode particles changed from month to month widely.


2012 ◽  
Vol 12 (5) ◽  
pp. 2795-2807 ◽  
Author(s):  
K. Alterskjær ◽  
J. E. Kristjánsson ◽  
Ø. Seland

Abstract. Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM). Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions over the Pacific and the Indian Oceans are susceptible. At low and mid latitudes the signal is dominated by the cloud fraction. We then carry out geo-engineering experiments with a uniform increase over ocean of 10−9 kg m−2 s−1 in emissions of sea salt particles with a dry modal radius of 0.13 μm, an emission strength and areal coverage much greater than proposed in earlier studies. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling the forcing associated with a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect. Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provides a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an overall reduction in the CCN concentration and the number of activated cloud droplets decreases, resulting in a positive forcing.


2011 ◽  
Vol 11 (10) ◽  
pp. 29527-29559 ◽  
Author(s):  
K. Alterskjær ◽  
J. E. Kristjánsson ◽  
Ø. Seland

Abstract. Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to a corresponding estimate from the Norwegian Earth System Model (NorESM). Results compare well between simulations and observations, showing that stratocumulus regions off the west coast of the major continents along with large regions in the Pacific and the Indian Oceans are susceptible. We then carry out geo-engineering experiments with a uniform increase of 10−9 kg m−2 s−1 in emissions of sea salt particles with a modal radius of 0.13 μm. The increased sea salt concentrations and the resulting change in marine cloud properties lead to a globally averaged forcing of −4.8 W m−2 at the top of the atmosphere, more than cancelling a doubling of CO2 concentrations. The forcing is large in areas found to be sensitive by using the susceptibility function, confirming its usefulness as an indicator of where to inject sea salt for maximum effect. Results also show that the effectiveness of sea salt seeding is reduced because the injected sea salt provide a large surface area for water vapor and gaseous sulphuric acid to condense on, thereby lowering the maximum supersaturation and suppressing the formation and lifetime of sulphate particles. In some areas, our simulations show an overall reduction in the CCN concentration and the number of activated cloud droplets decreases, resulting in a positive globally averaged forcing.


Sign in / Sign up

Export Citation Format

Share Document