trajectory system
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Silvia Bucci ◽  
Bernard Legras ◽  
Pasquale Sellitto ◽  
Francesco D'Amato ◽  
Silvia Viciani ◽  
...  

<p>The StratoClim stratospheric aircraft campaign, taking place in summer over the Nepalese region, provided a wide dataset of observations of air composition inside the Asian Monsoon Anticyclone (AMA). To improve the understanding of the role of penetrating overshoot in the AMA region, we exploit the TRACZILLA Lagrangian simulations, computed on meteorological fields from ECMWF (ERA-Interim and ERA5) at 3h and 1h resolution and using both kinematic and diabatic vertical velocity approaches. The synergy with high-resolution observations of convective cloud top from the MSG1 and Himawari geostationary satellites is used to individuate the convective sources.</p><p>To evaluate the capability of the trajectory system to reproduce the transport in the UTLS we compare the simulations with the observed trace gases concentration. The ERA5 simulations appear to provide a higher consistency with observed data than ERA-Interim and show a better agreement between the diabatic and kinematic results. The best performance is given by the ERA5 with diabatic transport and, adopting this setting, we analyze the transport condition during the 8 flights of the campaign.</p><p>The aircraft sampled different convective plumes, often carrying pollutant compounds up to the UTLS level. The highest observed concentration of trace gases had been linked to fresh convective air (younger than a few days) coming from China, Pakistan and the North Indian region.</p><p>A vertical stratification is observed in the age of air: up to 15 km, the age of air is less than 3 days and these fresh air masses make up nearly the entire totality of the air composition. Above, a transition layer is identified between 15 km and 17 km (close to the tropopause), where the convective influence is still dominant and the ages range from one week to two. Finally, above this layer, the convective influence rapidly decreases toward zero and the mean air age increase to 20 days and more.</p><p>This study quantifies the contribution of direct injection of deep convection on the UTLS composition based on the aircraft measurements. Preliminary results of the upscale analysis based on the trajectories-satellites system will also be presented.</p>



2020 ◽  
Author(s):  
Silvia Bucci ◽  
Bernard Legras ◽  
Pasquale Sellitto ◽  
Francesco D'Amato ◽  
Silvia Viciani ◽  
...  

Abstract. The StratoClim stratospheric aircraft campaign took place in summer 2017 in Nepal (the 27th of July–10th of August) and provided a wide dataset of observations of air composition inside the Asian Monsoon Anticyclone. In the framework of this project, with the purpose of modelling the injection of pollutants and natural compounds into the stratosphere, we performed a series of diffusive back-trajectories runs along the flights' tracks. The availability of in-situ measurements of trace gases has been exploited to evaluate the capability of the trajectory system to reproduce the transport in the Upper Troposphere–Lower Stratosphere (UTLS) region. The diagnostics of the convective sources and mixing in the air parcel samples have been derived by integrating the trajectories output with high-resolution observations of cloud tops from the Meteosat Second Generation (MSG1) and Himawari geostationary satellites. Back-trajectories have been calculated using meteorological fields from European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim and ERA-5) at 3 h and 1 h resolution, using both kinematic and diabatic vertical motion. The comparison among the different trajectory runs shows, in general, a higher consistency with observed data, as well as a better agreement between the diabatic and kinematic version, when using ERA-5 based runs with respect to ERA-Interim. Overall, a better capacity in reproducing the pollution features is finally found in the diabatic version of the ERA-5 runs. Adopting this setting for the analysis, a large variety of transport conditions have been individuated during the 8 flights of the campaign. The larger influence by convective injections is found from the continental sources of China and India. Only a small contribution appears to be originated from maritime regions, in particular the South Pacific and the Bay of Bengal that, unexpectedly, was not particularly active during the period of the campaign. Thin filamentary structures of polluted air, characterized by peaks in CO, are observed, mostly associated with young convective air (age less than a few days) and a predominant South-China origin. Observed air from continental India, on the contrary, is often linked to a lower concentration of the trace gas and to air masses that recirculated within the anticyclone for 10 to 20 days. Vertical stratification in the age of air is observed: up to 15 km, the age is less than 3 days and these fresh air masses constitute almost the totality of the air composition. A transition layer is then individuated between 15 km and 17 km, where the convective contribution is still dominant and the ages vary between one and two weeks. Above this level, the mean age of the air sampled by the aircraft is estimated to be 20 days. There, the convective contribution rapidly decreases with height, and finally became negligible around 20 km.



2018 ◽  
Vol 6 (1) ◽  
pp. 35-61 ◽  
Author(s):  
Dimas Pristovani Riananda ◽  
Ardik Wijayanto ◽  
Ali Husein Alasiry ◽  
A. Subhan Khalilullah

Synthetic grass surface is a new rule in international robot soccer competition (RoboCup). The main issue in the development of the RoboCup competition today is about how to make a humanoid robot walk above the field of synthetic grass. Because of that, the humanoid robot needs a system that can be implemented into the walking algorithm. This paper describes how to maintain the stability of humanoid robot called EROS by using walking trajectory algorithm without a control system. The establishment of the walking trajectory system is combined with a process of landing optimization using deceleration and heel-strikes gait optimization. This system has been implemented into a humanoid robot with 52 cm of height and walking on synthetic grass with different speeds. By adding optimization, the robot walks more stable from 32% to 80% of stability. In the next research, the control system will be added to improve the stability.







Author(s):  
He Nai-bao ◽  
Gao Qian ◽  
Gong Cheng-long ◽  
Jiang Chang-sheng
Keyword(s):  


2012 ◽  
Vol 622-623 ◽  
pp. 1510-1513
Author(s):  
Xiao Wei Liu ◽  
Yu Ma ◽  
Yong Ming Qin

The Capture Trajectory System (CTS) is an advanced measurement method of the trajectory for store separation in wind tunnel test. According to the characteristics of good real-time, high reliability and a large amount of data processing in the CTS test, an open-architecture measurement & control system based on VXI bus and PMAC2 is proposed in this paper, and its overall scheme design, hardware composition and software structure are described. With IPC, embedded operator and PMAC2 applied, the three level microcomputer structure ensures the system has good real-time and accurate trajectory control. The hierarchical software and the modular design method make sure that the system has good portability, universality and extensibility.



Author(s):  
Pei-Liang Shih ◽  
Po-Jung Chiu ◽  
Yaun-Chou Cheng ◽  
Ju-Yi Lin ◽  
Chih-Wei Yi


2012 ◽  
Vol 65 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Peter Brooker

The USA and Europe are developing plans – NextGen and SESAR – to transform the processes of Air Traffic Management (ATM). These will improve safety and efficiency, and match predicted increases in air transportation demand. They use advanced networking technology updated with information from satellite navigation and digital non-voice communication. The strategic goal, envisaged for 15–20 years hence, is a new ATM paradigm. Aircraft would fly on Four-Dimensional (4D) trajectories, incorporating altitude, position, time, and other aircraft positions and vectors. This vision would involve extremely large investments from the airline industry and ATM service providers. Thus, development priorities need to be based on sound business cases. But will these necessarily lead to the strategic vision of a 4D-trajectory system? Will the changes in practice be limited to a series of short and medium term operational improvements rather than strategic improvements? So, are there ‘Killer Apps’ for 4D-trajectory ATM? ‘Killer App(lication)s’ is jargon for innovations so valuable that they prove the core value of some larger technology. Killer Apps generate high degrees of stakeholder technical and financial cooperation. Ironically, most past ATM Killer Apps have improved safety, e.g., modern radar data processing led to collision avoidance systems. The analysis here attempts to identify and then size potential 4D-trajectory ATM Killer Apps. The evidence for Killer Apps has to pass key tests. Killer Apps obviously have to offer enormous benefits to stakeholders in the context of the potential costs. The bulk of these benefits must not be obtainable through technologically ‘cut down’ non−4D-trajectory versions. Part 1 of this paper (Brooker, 2012a) sets out the framework for investigating these questions. Part 2 examines potential Killer Apps derived from improvements in Fuel Efficiency, Capacity and Cost. An abbreviated version of this paper was first presented at the European Navigation Conference (ENC 2011), London in November 2011.



2012 ◽  
Vol 65 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Peter Brooker

Europe and the USA are developing plans (‘SESAR’ and ‘NextGen’) to transform the processes of Air Traffic Management (ATM). These will improve safety and efficiency, and match predicted increases in air transportation demand. Aircraft would fly on Four Dimensional-Trajectories (4D-Trajectories), incorporating altitude, position, time, and other aircraft positions and vectors. This vision would involve extremely large investments from the airline industry and ATM service providers. Thus, development priorities need to be based on sound business cases. But will these necessarily lead to the strategic vision of a 4D-Trajectory system? Will the changes in practice be limited to a series of short and medium term operational improvements rather than strategic improvements? Killer App(lication)s is jargon for innovations so valuable that they prove the core value of some larger technology. So, are there ‘Killer Apps’ for 4D-Trajectory ATM? Killer Apps generate high degrees of stakeholder technical and financial cooperation. Ironically, most past ATM Killer Apps have improved safety. The analysis here attempts to identify and then size potential 4D-Trajectory ATM Killer Apps. The evidence for Killer Apps has to pass key tests. Killer Apps obviously have to offer enormous benefits to stakeholders in the context of the potential costs. The bulk of these benefits must not be obtainable through technologically ‘cut down’ non−4D-Trajectory versions. Part 1 of this paper sets out the framework for investigating these questions; Part 2 will be published subsequently and will examine potential Killer Apps derived from improvements in Fuel Efficiency, Capacity and Cost. An abbreviated version of this paper was first presented at the European Navigation Conference (ENC 2011), London in November 2011.



Sign in / Sign up

Export Citation Format

Share Document