scholarly journals Deep convective influence on the UTLS composition in the Asian Monsoon Anticyclone region: 2017 StratoClim campaign results

Author(s):  
Silvia Bucci ◽  
Bernard Legras ◽  
Pasquale Sellitto ◽  
Francesco D'Amato ◽  
Silvia Viciani ◽  
...  

Abstract. The StratoClim stratospheric aircraft campaign took place in summer 2017 in Nepal (the 27th of July–10th of August) and provided a wide dataset of observations of air composition inside the Asian Monsoon Anticyclone. In the framework of this project, with the purpose of modelling the injection of pollutants and natural compounds into the stratosphere, we performed a series of diffusive back-trajectories runs along the flights' tracks. The availability of in-situ measurements of trace gases has been exploited to evaluate the capability of the trajectory system to reproduce the transport in the Upper Troposphere–Lower Stratosphere (UTLS) region. The diagnostics of the convective sources and mixing in the air parcel samples have been derived by integrating the trajectories output with high-resolution observations of cloud tops from the Meteosat Second Generation (MSG1) and Himawari geostationary satellites. Back-trajectories have been calculated using meteorological fields from European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-Interim and ERA-5) at 3 h and 1 h resolution, using both kinematic and diabatic vertical motion. The comparison among the different trajectory runs shows, in general, a higher consistency with observed data, as well as a better agreement between the diabatic and kinematic version, when using ERA-5 based runs with respect to ERA-Interim. Overall, a better capacity in reproducing the pollution features is finally found in the diabatic version of the ERA-5 runs. Adopting this setting for the analysis, a large variety of transport conditions have been individuated during the 8 flights of the campaign. The larger influence by convective injections is found from the continental sources of China and India. Only a small contribution appears to be originated from maritime regions, in particular the South Pacific and the Bay of Bengal that, unexpectedly, was not particularly active during the period of the campaign. Thin filamentary structures of polluted air, characterized by peaks in CO, are observed, mostly associated with young convective air (age less than a few days) and a predominant South-China origin. Observed air from continental India, on the contrary, is often linked to a lower concentration of the trace gas and to air masses that recirculated within the anticyclone for 10 to 20 days. Vertical stratification in the age of air is observed: up to 15 km, the age is less than 3 days and these fresh air masses constitute almost the totality of the air composition. A transition layer is then individuated between 15 km and 17 km, where the convective contribution is still dominant and the ages vary between one and two weeks. Above this level, the mean age of the air sampled by the aircraft is estimated to be 20 days. There, the convective contribution rapidly decreases with height, and finally became negligible around 20 km.

2020 ◽  
Vol 20 (20) ◽  
pp. 12193-12210
Author(s):  
Silvia Bucci ◽  
Bernard Legras ◽  
Pasquale Sellitto ◽  
Francesco D'Amato ◽  
Silvia Viciani ◽  
...  

Abstract. The StratoClim stratospheric aircraft campaign took place in summer 2017 in Nepal (27 July–10 August) and provided for the first time a wide dataset of observations of air composition inside the Asian monsoon anticyclone (AMA). In the framework of this project, with the purpose of modelling the injection of pollutants and natural compounds into the stratosphere, we performed a series of diffusive back trajectory runs along the flights' tracks. The availability of in situ measurements of trace gases has been exploited to evaluate the capability of the trajectory system to reproduce the transport in the upper troposphere–lower stratosphere (UTLS) region. The diagnostics of the convective sources and mixing in the air parcel samples have been derived by integrating the trajectory output with high-resolution observations of cloud tops from the Meteosat Second Generation (MSG1) and Himawari geostationary satellites. Back trajectories have been calculated using meteorological fields from European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim and ERA5) at 3 and 1 h resolution, using both kinematic and diabatic vertical motion. The comparison among the different trajectory runs shows, in general, a higher consistency with observed data as well as a better agreement between the diabatic and kinematic version when using ERA5-based runs with respect to ERA-Interim. Overall, a better capacity in reproducing the pollution features is finally found in the diabatic version of the ERA5 runs. We therefore adopt this setting to analyse the convective influence in the UTLS starting from the StratoClim observations. A large variety of transport conditions have been individuated during the eight flights of the campaign. The larger influence by convective injections is found from the continental sources of China and India. Only a small contribution appears to be originated from maritime regions, in particular the South Pacific and the Bay of Bengal, which, unexpectedly, was not particularly active during the period of the campaign. In addition, a mass of clean air injected from a typhoon has also been detected at around 18 km. Thin filamentary structures of polluted air, characterized by peaks in CO, are observed, mostly associated with young convective air (age less than a few days) and with a predominant South China origin. The analysis revealed a case of direct injection of highly polluted air close to the level of the tropopause (anomalies of around 80 ppbv injected at 16 km) that then kept rising inside the anticyclonic circulation. Due to the location of the campaign, air from continental India, in contrast, has been only observed to be linked to air masses that recirculated within the anticyclone for 10 to 20 d, resulting in a lower concentration of the trace gas. The analysis of a flight overpassing an intense convective system close to the southern Nepalese border revealed the injection of very young air (few hours of age) directly in the tropopause region (∼18 km), visible in the trace gases as an enhancement in CO and a depletion in the O3 one. From the whole campaign, a vertical stratification in the age of air is observed: up to 15 km, the age is less than 3 d, and these fresh air masses constitute almost the totality of the air composition. A transition layer is then individuated between 15 and 17 km, where the convective contribution is still dominant, and the ages vary between 1 and 2 weeks. Above this level, the mean age of the air sampled by the aircraft is estimated to be 20 d. There, the convective contribution rapidly decreases with height and finally becomes negligible around 20 km.


2016 ◽  
Author(s):  
Klaus-D. Gottschaldt ◽  
Hans Schlager ◽  
Robert Baumann ◽  
Heiko Bozem ◽  
Veronika Eyring ◽  
...  

Abstract. We present in-situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and LOng range (HALO) research aircraft in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to previous studies, reporting that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric inmixing, respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled three times a filament of UT air, which included air masses uplifted from the lower or mid troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in-situ observations across the southern and downstream the eastern ASMA flank, respectively. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the anticyclone at its eastern flank. Back-trajectories and increased HCl mixing ratios indicate that the entrained air originates in the stratospherically influenced TL. Photochemical ageing of air masses in the ASMA additionally increases O3 in originally O3-poor, but CO-rich air. Simulated monthly mean trace gas distributions show decreased O3 in the ASMA centre not in general, but only at the 100 hPa level in July and August, as also reported by previous studies. However, at lower altitudes and in September the ASMA is dominated by increased O3, indicating that the above processes are more important for the ASMA trace gas budgets than previously thought.


2017 ◽  
Vol 17 (9) ◽  
pp. 6091-6111 ◽  
Author(s):  
Klaus-D. Gottschaldt ◽  
Hans Schlager ◽  
Robert Baumann ◽  
Heiko Bozem ◽  
Veronika Eyring ◽  
...  

Abstract. We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the anticyclone at its eastern flank. Back-trajectories and increased HCl mixing ratios indicate that the entrained air originates in the stratospherically influenced TL. Photochemical ageing of air masses in the ASMA additionally increases O3 in originally O3-poor, but CO-rich air. Simulated monthly mean trace gas distributions show decreased O3 in the ASMA centre only at the 100 hPa level in July and August, but at lower altitudes and in September the ASMA is dominated by increased O3. The combination of entrainment from the tropopause region, photochemistry and dynamical instabilities can explain the in situ observations, and might have a larger impact on the highly variable trace gas composition of the anticyclone than previously thought.


2021 ◽  
Author(s):  
Victor Lannuque ◽  
Bastien Sauvage ◽  
Brice Barret ◽  
Hannah Clark ◽  
Gilles Athier ◽  
...  

Abstract. Between December 2005 and 2013, the In-service Aircraft for a Global Observing System (IAGOS) program produced almost daily in situ measurements of CO and O3 between Europe and southern Africa. IAGOS data combined with measurements from the IASI instrument onboard the Metop-A satellite (2008–2013) are used to characterize meridional distributions and seasonality of CO and O3 in the African upper troposphere (UT). The FLEXPART particle dispersion model and the SOFT-IO model which combines the FLEXPART model with CO emission inventories are used to explore the sources and origins of the observed transects of CO and O3. We focus our analysis on two main seasons: December to March (DJFM) and June to October (JJASO). These seasons have been defined according to the position of Intertropical Convergence Zone (ITCZ), determined using in situ measurements from IAGOS. During both seasons, the UT CO meridional transects are characterized by maximum mixing ratios located 10° from the position of the ITCZ above the dry regions inside the hemisphere of the strongest Hadley cell (132 to 165 ppb at 0–5° N in DJFM and 128 to 149 ppb at 3–7° S in JJASO), and decreasing values south- and north-ward. The O3 meridional transects are characterized by mixing ratio minima of ~ 42–54 ppb at the ITCZ (10–16° S in DJFM and 5–8° N in JJASO) framed by local maxima (~ 53–71 ppb) coincident with the wind shear zones North and South of the ITCZ. O3 gradients are strongest in the hemisphere of the strongest Hadley cell. IASI UT O3 distributions in DJFM have revealed that the maxima are a part of a crescent-shaped O3 plume above the Atlantic Ocean around the Gulf of Guinea. CO emitted at the surface is transported towards the ITCZ by the trade winds and then convectively uplifted. Once in the upper troposphere, CO enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maximum CO mixing ratios are found. Anthropogenic and fires both contribute, by the same order of magnitude, to the CO budget of the African upper troposphere. Local fires have the highest contribution, drive the location of the observed UT CO maxima, and are related to the following transport pathway: CO emitted at the surface is transported towards the ITCZ by the trade winds and further convectively uplifted. Then UT CO enriched air masses are transported away from the ITCZ by the upper branches of the Hadley cells and accumulate within the zonal wind shear zones where the maxima are located. Anthropogenic CO contribution is mostly from Africa during the entire year, with a low seasonal variability, and is related to similar transport circulation than fire air masses. There is also a large contribution from Asia in JJASO related to the fast convective uplift of polluted air masses in the Asian monsoon region which are further westward transported by the tropical easterly jet (TEJ) and the Asian monsoon anticyclone (AMA). O3 minima correspond to air masses that were recently uplifted from the surface where mixing ratios are low at the ITCZ. The O3 maxima correspond to old high altitude air masses uplifted from either local or long distance area of high O3 precursor emissions (Africa and South America during all the year, South Asia mainly in JJASO), and must be created during transport by photochemistry. This analysis of meridional transects contribute to a better understanding of distributions of CO and O3 in the intertropical African upper troposphere and the processes which drive these distributions. Therefore, it provides a solid basis for comparison and improvement of models and satellite products in order to get the good O3 for the good reasons.


2015 ◽  
Vol 15 (23) ◽  
pp. 34765-34812
Author(s):  
S. Müller ◽  
P. Hoor ◽  
H. Bozem ◽  
E. Gute ◽  
B. Vogel ◽  
...  

Abstract. The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In-situ measurements of CO, O3 and N2O during TACTS Flight 2 on the 30 August 2012 show the irreversible mixing of aged with younger (originating from the troposphere) stratospheric air masses within the Ex-UTLS. Backward trajectories calculated with the trajetory module of the CLaMS model indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. From the monsoon circulation region these air masses are quasi-isentropically transported above Θ = 380 K into the Ex-UTLS where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway has a significant impact on the Ex-UTLS during boreal summer and autumn. This leads to an intensification of the tropospheric influence on the Ex-UTLS with ΔΘ > 30 K (relative to the tropopause) within three weeks during the TACTS mission. In the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. Therefore, the study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere above Θ = 380 K is of major importance for the change of the chemical composition of the Ex-UTLS from summer to autumn.


2011 ◽  
Vol 11 (12) ◽  
pp. 5655-5672 ◽  
Author(s):  
I. Xueref-Remy ◽  
C. Messager ◽  
D. Filippi ◽  
M. Pastel ◽  
P. Nedelec ◽  
...  

Abstract. Atmospheric airborne measurements of CO2 are very well suited for estimating the time-varying distribution of carbon sources and sinks at the regional scale due to the large geographical area covered over a short time. We present here an analysis of two cross-European airborne campaigns carried out on 23–26 May 2001 (CAATER-1) and 2–3 October 2002 (CAATER-2) over Western Europe. The area covered during CAATER-1 and CAATER-2 was 4° W to 14° E long; 44° N to 52° N lat and 1° E to 17° E long; 46° N to 52° N lat respectively. High precision in situ CO2, CO and Radon 222 measurements were recorded. Flask samples were collected during both campaigns to cross-validate the in situ data. During CAATER-1 and CAATER-2, the mean CO2 concentration was 370.1 ± 4.0 (1-σ standard deviation) ppm and 371.7 ± 5.0 (1-σ) ppm respectively. A HYSPLIT back-trajectories analysis shows that during CAATER 1, northwesterly winds prevailed. In the planetary boundary layer (PBL) air masses became contaminated over Benelux and Western Germany by emissions from these highly urbanized areas, reaching about 380 ppm. Air masses passing over rural areas were depleted in CO2 because of the photosynthesis activity of the vegetation, with observations as low as 355 ppm. During CAATER-2, the back-trajectory analysis showed that air masses were distributed among the 4 sectors. Air masses were enriched in CO2 and CO over anthropogenic emission spots in Germany but also in Poland, as these countries have part of the most CO2-emitting coal-based plants in Europe. Simultaneous measurements of in situ CO2 and CO combined with back-trajectories helped us to distinguish between fossil fuel emissions and other CO2 sources. The ΔCO/ΔCO2 ratios (R2 = 0.33 to 0.88, slopes = 2.42 to 10.37), calculated for anthropogenic-influenced air masses over different countries/regions matched national inventories quite well, showing that airborne measurements can help to identify the origin of fossil fuel emissions in the PBL even when distanced by several days/hundreds of kms from their sources. We have compared airborne CO2 observations to nearby ground station measurements and thereby, confirmed that measurements taken in the lower few meters of the PBL (low-level ground stations) are representative of the local scale, while those located in the free troposphere (FT) (moutain stations) are representative of atmospheric CO2 regionally on a scale of a few hundred kilometers. Stations located several 100 km away from each other differ from a few ppm in their measurements indicating the existence of a gradient within the free troposphere. Observations at stations located on top of small mountains may match the airborne data if the sampled air comes from the FT rather than coming up from the valley. Finally, the analysis of the CO2 vertical variability conducted on the 14 profiles recorded in each campaign shows a variability at least 5 to 8 times higher in the PBL (the 1-σ standard deviation associated to the CO2 mean of all profiles within the PBL is 4.0 ppm and 5.7 ppm for CAATER-1 and CAATER-2, respectively) than in the FT (within the FT, 1-σ is 0.5 ppm and 1.1 ppm for CAATER-1 and CAATER-2, respectively). The CO2 jump between the PBL and the FT equals 3.7 ppm for the first campaign and −0.3 ppm for the second campaign. A very striking zonal CO2 gradient of about 11 ppm was observed in the mid-PBL during CAATER-2, with higher concentrations in the west than in the east. This gradient may originate from differences in atmospheric mixing, ground emission rates or Autumn's earlier start in the west. More airborne campaigns are currently under analysis in the framework of the CARBOEUROPE-IP project to better assess the likelihood of these different hypotheses. In a companion paper (Xueref-Remy et al., 2011, Part 2), a comparison of vertical profiles from observations and several modeling frameworks was conducted for both campaigns.


2010 ◽  
Vol 10 (22) ◽  
pp. 10753-10770 ◽  
Author(s):  
K. S. Law ◽  
F. Fierli ◽  
F. Cairo ◽  
H. Schlager ◽  
S. Borrmann ◽  
...  

Abstract. Trace gas and aerosol data collected in the tropical tropopause layer (TTL) between 12–18.5 km by the M55 Geophysica aircraft as part of the SCOUT-AMMA campaign over West Africa during the summer monsoon in August 2006 have been analysed in terms of their air mass origins. Analysis of domain filling back trajectories arriving over West Africa, and in the specific region of the flights, showed that the M55 flights were generally representative of air masses arriving over West Africa during the first 2 weeks of August, 2006. Air originating from the mid-latitude lower stratosphere was under-sampled (in the mid-upper TTL) whilst air masses uplifted from central Africa (into the lower TTL) were over-sampled in the latter part of the campaign. Signatures of recent (previous 10 days) origins were superimposed on the large-scale westward flow over West Africa. In the lower TTL, air masses were impacted by recent local deep convection over Africa at the level of main convective outflow (350 K, 200 hPa) and on certain days up to 370 K (100 hPa). Estimates of the fraction of air masses influenced by local convection vary from 10 to 50% depending on the method applied and from day to day during the campaign. The analysis shows that flights on 7, 8 and 11 August were more influenced by local convection than on 4 and 13 August allowing separation of trace gas and aerosol measurements into "convective" and "non-convective" flights. Strong signatures, particularly in species with short lifetimes (relative to CO2) like CO, NO and fine-mode aerosols were seen during flights most influenced by convection up to 350–365 K. Observed profiles were also constantly perturbed by uplift (as high as 39%) of air masses from the mid to lower troposphere over Asia, India, and oceanic regions resulting in import of clean oceanic (e.g. O3-poor) or polluted air masses from Asia (high O3, CO, CO2) into West Africa. Thus, recent uplift of CO2 over Asia may contribute to the observed positive CO2 gradients in the TTL over West Africa. This suggests a more significant fraction of younger air masses in the TTL and needs to taken into consideration in derivations of mean age of air. Transport of air masses from the mid-latitude lower stratosphere had an impact from the mid-TTL upwards (20–40% above 370 K) during the campaign period importing air masses with high O3 and NOy. Ozone profiles show a less pronounced lower TTL minimum than observed previously by regular ozonesondes at other tropical locations. Concentrations are less than 100 ppbv in the lower TTL and vertical gradients less steep than in the upper TTL. The air mass origin analysis and simulations of in-situ net photochemical O3 production, initialised with observations, suggest that the lower TTL is significantly impacted by uplift of O3 precursors (over Africa and Asia) leading to positive production rates (up to 2 ppbv per day) in the lower and mid TTL even at moderate NOx levels. Photochemical O3 production increases with higher NOx and H2O in air masses with O3 less than 150 ppbv.


2020 ◽  
Author(s):  
Wolfgang Woiwode ◽  
Andreas Dörnbrack ◽  
Inna Polichtchouk ◽  
Sören Johansson ◽  
Ben Harvey ◽  
...  

Abstract. Numerical weather forecast systems like the ECMWF IFS (European Centre for Medium-Range Weather Forecasts – Integrated Forecasting System) are known to be affected by a moist bias in the extratropical lowermost stratosphere (LMS) which results in a systematic cold bias there. We use high spatial resolution water vapour measurements by the airborne 15 infrared limb-imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) during the PGS (POLSTRACC/GW-LCYLCE-II/SALSA) campaign to study the LMS moist bias in ECMWF analyses and 12 h forecasts in the season from January to March 2016. Thereby, we exploit the 2-dimensional observational capabilities of GLORIA, when compared to in situ observations, and the higher vertical and horizontal resolution, when compared to satellite observations. Using GLORIA observations taken during five flights in the polar sub-vortex region around Scandinavia and Greenland, we 20 diagnose a systematic moist bias in the LMS peaking at +50 % at potential vorticity levels of 6 to 10 PVU. In the diagnosed time period, the moist bias reduces at the highest and driest air masses observed, but clearly persists at lower levels until mid-March. Sensitivity experiments with more frequent temporal output, lower horizontal resolution, and higher/lower vertical resolution, show the short-term forecasts to be practically insensitive to these parameters on time scales of


2002 ◽  
Vol 2 (4) ◽  
pp. 943-981 ◽  
Author(s):  
A. T. J. de Laat

Abstract. A comparison and analysis of modeled and measured O3 profiles from the INDOEX campaign is presented. European Centre for Medium-Range Weather Forecast  (ECMWF) meteorological analyses have been assimilated into the model to represent actual meteorology. The focus of this study is on two commonly observed features in the O3 profiles: mid tropospheric O3 maxima (300--500 hPa) over the tropical Indian Ocean, and the upper-tropospheric O3  laminae that occur above approximately 14 km (>150 hPa) altitude. A comparison of model simulated O3 profiles with measured O3 profiles indicates that the model realistically simulates the observed mid-tropospheric O3 maxima. An analysis of the model simulations shows that the major source of the mid-tropospheric O3 maxima is advection of polluted air masses from continental biomass burning areas over Africa, with generally only a small contribution of stratospheric O3. Previous studies hinted at Stratosphere-Troposphere exchange (STE) along the subtropical jet (STJ) as the primary source of the mid-tropospheric O3 maxima over the Indian Ocean. Analysis of the model simulations shows that the mechanism causing the mid-tropospheric transport of African biomass burning pollution and stratospheric air masses are frontal zones or waves passing along the subtropical jets, causing advection of tropical air masses in the prefrontal zone. Furthermore, these frontal zones or waves also cause STE at the mid-latitudinal side of the STJ. The model simulations also indicate that the contribution of STE in general is minor compared to advection and in situ tropospheric production of O3 for the mid-tropospheric O3 budget over the Indian Ocean region. An analysis of the model simulations shows that the model cannot exactly reproduce the measured upper-tropospheric O3 maxima. However, modeled O3 mixing ratios at 14 and 16 km altitude are significantly higher than at 8 to 12 km altitude, indicating that the model does simulate an upper-tropospheric layer. According to the model simulations, the sources of O3 at 14 and 16 km altitude are advection of both tropospheric and stratospheric O3 as well as in situ O3 formation.


2008 ◽  
Vol 8 (3) ◽  
pp. 10627-10664
Author(s):  
R. James ◽  
B. Legras

Abstract. Both in situ measurements and satellite observations indicate evidence of mixing in the upper troposphere (UT) and the lower-stratosphere (LS). In this study, the measurements performed during the Pre-AVE and Costa-Rica AVE campaigns are analysed with diffusive back-trajectories to assess mixing properties in the tropical and the subtropical UT/LS. A description of cross-tropopause pathways and mixing time scales is provided. In the subtropics, Troposphere-Stratosphere mixing processes are found to differ in the vicinity of the tropopause and at higher altitudes. Below 350 K, the mixing line observed during Pre-AVE is shown to result from fast and local cross-tropopause irreversible exchange, involving two initially distant air masses with distinct chemical compositions. For measurements located above 350 K, mixing of the tropospheric air in the subtropical stratosphere occurs over a period of a month, the origins of the tropospheric source being localised in the tropical UT and the tropical boundary layer. In the tropics, quantitative reconstructions of CO and O3 profiles above 360 K are obtained for one month back-trajectories calculations, pointing out that long term mixing is essential to determine the chemical composition in the tropical ascent. In particular, the existence of two-way meridional irreversible exchanges between 360 and 450 K is found to export tropical air in the subtropical stratosphere and to entrain old stratospheric air in the tropical ascent. Calculations of the Lagrangian mean age of air is shown to be in qualitative agreement with the CO2 observations and diabatic calculations.


Sign in / Sign up

Export Citation Format

Share Document