scholarly journals The mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice

2010 ◽  
Vol 298 (2) ◽  
pp. G222-G232 ◽  
Author(s):  
Eamonn J. Dickson ◽  
Dante J. Heredia ◽  
Conor J. McCann ◽  
Grant W. Hennig ◽  
Terence K. Smith

Colonic migrating motor complexes (CMMCs) propel fecal contents and are altered in diseased states, including slow-transit constipation. However, the mechanisms underlying the CMMCs are controversial because it has been proposed that disinhibition (turning off of inhibitory neurotransmission) or excitatory nerve activity generate the CMMC. Therefore, our aims were to reexamine the mechanisms underlying the CMMC in the colon of wild-type and neuronal nitric oxide synthase (nNOS)−/− mice. CMMCs were recorded from the isolated murine large bowel using intracellular recordings of electrical activity from circular muscle (CM) combined with tension recording. Spontaneous CMMCs occurred in both wild-type (frequency: 0.3 cycles/min) and nNOS−/− mice (frequency: 0.4 cycles/min). CMMCs consisted of a hyperpolarization, followed by fast oscillations (slow waves) with action potentials superimposed on a slow depolarization (wild-type: 14.0 ± 0.6 mV; nNOS−/−: 11.2 ± 1.5 mV). Both atropine (1 μM) and MEN 10,376 [neurokinin 2 (NK2) antagonist; 0.5 μM] added successively reduced the slow depolarization and the number of action potentials but did not abolish the fast oscillations. The further addition of RP 67580 (NK1 antagonist; 0.5 μM) blocked the fast oscillations and the CMMC. Importantly, none of the antagonists affected the resting membrane potential, suggesting that ongoing tonic inhibition of the CM was maintained. Fecal pellet propulsion, which was blocked by the NK2 or the NK1 antagonist, was slower down the longer, more constricted nNOS−/− mouse colon (wild-type: 47.9 ± 2.4 mm; nNOS−/−: 57.8 ± 1.4 mm). These observations suggest that excitatory neurotransmission enhances pacemaker activity during the CMMC. Therefore, the CMMC is likely generated by a synergistic interaction between neural and interstitial cells of Cajal networks.

1989 ◽  
Vol 257 (4) ◽  
pp. C830-C835 ◽  
Author(s):  
C. Barajas-Lopez ◽  
I. Berezin ◽  
E. E. Daniel ◽  
J. D. Huizinga

The hypothesis was tested that interstitial cells of Cajal can generate slow wave activity. Intracellular recordings were performed only in the most superficial cells at the submucosal surface of the canine colonic circular muscle layer. An omnipresent and characteristic slow wave activity was present in all cells with a mean amplitude of 37 +/- 3 mV, a frequency of 4.6 +/- 0.1 counts/min (cpm), and a duration of 5.6 +/- 0.5 s; the average resting membrane potential was -70 +/- 1 mV. To determine the type of cell from which these recordings were obtained, methylene blue was injected by microiontophoresis. The strips were immediately fixed while the microelectrode was kept in the cell. A small segment of the tissue containing this cell was then processed for electron microscopy and serially sectioned. Electron-microscopic evidence showed that the microelectrode tip was positioned in an interstitial cell of Cajal (ICC): 1) several sections were observed with round cytoplasmic lesions of decreasing diameter followed by sections from the same cell without the lesion and 2) electron-dense material was observed in these sections due to the injected methylene blue. These cells were identified as part of the ICC network present at the muscle-submucosa interface of the circular muscle and were positively identified as ICC by the presence of cell processes. This is the first report giving direct evidence for the occurrence of electrical slow waves in ICC. It is essential support for the hypothesis that ICC are the actual pacemaker cells of the gut musculature.


1996 ◽  
Vol 271 (3) ◽  
pp. G387-G399 ◽  
Author(s):  
J. Malysz ◽  
L. Thuneberg ◽  
H. B. Mikkelsen ◽  
J. D. Huizinga

The small intestine of W/Wv mice lacks both the network of interstitial cells of Cajal (ICC), associated with Auerbach's plexus, and pacemaker activity, i.e., it does not generate slow-wave-type action potentials. The W/Wv muscle preparations showed a wide variety of electrical activities, ranging from total quiescence to generation of action potentials at regular or irregular frequency with or without periods of quiescence. The action potentials consisted of a slow component with superimposed spikes, preceded by a slowly developing depolarization and followed by a transient hyperpolarization. The action potentials were completely abolished by L-type Ca2+ channel blockers. W/Wv mice responded to K+ channel blockade (0.5 mM Ba2+ or 10 mM tetraethylammonium chloride) with effects on amplitude, frequency, rate of rise, and duration of the action potentials. In quiescent tissues from W/Wv mice, K+ channel blockade evoked the typical spikelike action potentials. Electron microscopy identified few methylene blue-positive cells in the W/Wv small intestine associated with Auerbach's plexus as individual ICC. Numbers of resident macrophage-like cells (MLC) and fibroblast-like cells (FLC) were significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus in normal organization and numbers, indicating that they are not dependent on the Kit protein and do not take part in generation of pacemaker activity.


2005 ◽  
Vol 288 (3) ◽  
pp. C710-C720 ◽  
Author(s):  
Yoshihiko Kito ◽  
Sean M. Ward ◽  
Kenton M. Sanders

Pacemaker potentials were recorded in situ from myenteric interstitial cells of Cajal (ICC-MY) in the murine small intestine. The nature of the two components of pacemaker potentials (upstroke and plateau) were investigated and compared with slow waves recorded from circular muscle cells. Pacemaker potentials and slow waves were not blocked by nifedipine (3 μM). In the presence of nifedipine, mibefradil, a voltage-dependent Ca2+ channel blocker, reduced the amplitude, frequency, and rate of rise of upstroke depolarization (d V/d tmax) of pacemaker potentials and slow waves in a dose-dependent manner (1–30 μM). Mibefradil (30 μM) changed the pattern of pacemaker potentials from rapidly rising, high-frequency events to slowly depolarizing, low-frequency events with considerable membrane noise (unitary potentials) between pacemaker potentials. Caffeine (3 mM) abolished pacemaker potentials in the presence of mibefradil. Pinacidil (10 μM), an ATP-sensitive K+ channel opener, hyperpolarized ICC-MY and increased the amplitude and d V/d tmax without affecting frequency. Pinacidil hyperpolarized smooth muscle cells and attenuated the amplitude and d V/d tmax of slow waves without affecting frequency. The effects of pinacidil were blocked by glibenclamide (10 μM). These data suggest that slow waves are electrotonic potentials driven by pacemaker potentials. The upstroke component of pacemaker potentials is due to activation of dihydropyridine-resistant Ca2+ channels, and this depolarization entrains pacemaker activity to create the plateau potential. The plateau potential may be due to summation of unitary potentials generated by individual or small groups of pacemaker units in ICC-MY. Entrainment of unitary potentials appears to depend on Ca2+ entry during upstroke depolarization.


Author(s):  
Jae Boum Youm ◽  
Nari Kim ◽  
Jin Han ◽  
Euiyong Kim ◽  
Hyun Joo ◽  
...  

The pacemaker activity of interstitial cells of Cajal (ICCs) has been known to initiate the propagation of slow waves along the whole gastrointestinal tract through spontaneous and repetitive generation of action potentials. We studied the mechanism of the pacemaker activity of ICCs in the mouse small intestine and tested it using a mathematical model. The model includes ion channels, exchanger, pumps and intracellular machinery for Ca 2+ regulation. The model also incorporates inositol 1,4,5-triphosphate (IP 3 ) production and IP 3 -mediated Ca 2+ release activities. Most of the parameters were obtained from the literature and were modified to fit the experimental results of ICCs from mouse small intestine. We were then able to compose a mathematical model that simulates the pacemaker activity of ICCs. The model generates pacemaker potentials regularly and repetitively as long as the simulation continues. The frequency was set at 20 min −1 and the duration at 50% repolarization was 639 ms. The resting and overshoot potentials were −78 and +1.2 mV, respectively. The reconstructed pacemaker potentials closely matched those obtained from animal experiments. The model supports the idea that cyclic changes in [Ca 2+ ] i and [IP 3 ] play key roles in the generation of ICC pacemaker activity in the mouse small intestine.


1993 ◽  
Vol 264 (1) ◽  
pp. G64-G73 ◽  
Author(s):  
L. W. Liu ◽  
L. Thuneberg ◽  
E. E. Daniel ◽  
J. D. Huizinga

The network of interstitial cells of Cajal (ICC) at the submucosal surface of the canine colon was selectively stained by incubation with 15-50 microM methylene blue for 30-45 min. The network was composed of regularly scattered ICC cell bodies interconnected by long processes. Circular muscle cells were unstained. Staining of neurons was limited to one or two axons within bundles. The ICC network had a thickness of a single cell, since no overlapping of ICC cell bodies was observed. The ICC network connected the circular muscle cells at the submucosal surface across the septa which circumferentially divided the circular muscle into lamellae. Methylene blue at 50 microM slightly decreased the resting membrane potential and increased the duration of slow waves, leading to an increase in the force of phasic contractions, with no significant influence on other slow-wave parameters. Methylene blue produced neither electrophysiological nor mechanical effects on circular muscle preparations from which the submuscular ICC network was removed, indicating that the excitatory effects of methylene blue on the full-thickness circular muscle layer were mediated by ICC. In summary, the three-dimensional aspects of the submuscular ICC network can be visualized after selective staining by methylene blue. This staining does not affect physiological characteristics of smooth muscle cells.


1990 ◽  
Vol 68 (3) ◽  
pp. 447-454 ◽  
Author(s):  
Jan D. Huizinga ◽  
Irene Berezin ◽  
Edwin E. Daniel ◽  
Edwin Chow

The effect of neural inhibition on the electrical activities of circular and longitudinal colonic smooth muscle was investigated. In addition, a comparative study was carried out between circular muscle preparations with and without the "submucosal" and "myenteric plexus" network of interstitial cells of Cajal (ICC) to study innervation of the "submucosal" ICC and to investigate whether or not the ICC network is an essential intermediary system for inhibitory innervation of smooth muscle cells. Electrical stimulation of intrinsic nerves in the presence of atropine caused inhibitory junction potentials (ijps) throughout the circular and longitudinal muscle layers. The ijp amplitude depended on the membrane potential and not on the location of the muscle cells with respect to the ICC network. Neurally mediated inhibition of the colon resulted in a reduction in amplitude and duration of slow wave type action potentials in circular and abolishment of spike-like action potentials in longitudinal smooth muscle, both resulting in a reduction of contractile activity. With respect to mediation by ICC, the study shows (i) "submucosal" ICC receive direct inhibitory innervation and (ii) circular smooth muscle cells can be directly innervated by inhibitory nerves without ICC as necessary intermediaries. The reversal potential of the ijp in colonic smooth muscle was observed to be approximately −76 mV, close to the estimated potassium equilibrium potential, suggesting that the nerve-mediated hyperpolarization is caused by increased potassium conductance.Key words: enteric nerves, potassium conductance, pacemaker activity, VIP, inhibitory junction potential.


2007 ◽  
Vol 292 (6) ◽  
pp. G1499-G1510 ◽  
Author(s):  
E. Albertí ◽  
H. B. Mikkelsen ◽  
X. Y. Wang ◽  
M. Díaz ◽  
J. O. Larsen ◽  
...  

The aim of this study was to characterize the pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats, which harbor a mutation in the c- kit gene that affects development of interstitial cells of Cajal (ICC). In Ws/Ws rats, the density of KIT-positive cells was markedly reduced. Wild-type, but not Ws/Ws, rats showed low- and high-frequency cyclic depolarization that were associated with highly regular myogenic motor patterns at the same frequencies. In Ws/Ws rats, irregular patterns of action potentials triggered irregular muscle contractions occurring within a bandwidth of 10–20 cycles/min. Spontaneous activity of nitrergic nerves caused sustained inhibition of muscle activity in both wild-type (+/+) and Ws/Ws rats. Electrical field stimulation of enteric nerves, after blockade of cholinergic and adrenergic activity, elicited inhibition of mechanical activity and biphasic inhibitory junction potentials both in wild-type and Ws/Ws rats. Apamin-sensitive, likely purinergic, inhibitory innervation was not affected by loss of ICC. Variable presence of nitrergic innervation likely reflects the presence of direct nitrergic innervation to smooth muscle cells as well as indirect innervation via ICC. In summary, loss of ICC markedly affects pacemaker and motor activities of the rat colon. Inhibitory innervation is largely maintained but nitrergic innervation is reduced possibly related to the loss of ICC-mediated relaxation.


2002 ◽  
Vol 283 (2) ◽  
pp. G445-G456 ◽  
Author(s):  
Sean M. Ward ◽  
Michael D. Gershon ◽  
Kathleen Keef ◽  
Yulia R. Bayguinov ◽  
Cheryl Nelson ◽  
...  

An antibody directed against Kit protein was used to investigate the distribution of interstitial cells of Cajal (ICC) within the murine colon. The ICC density was greatest in the proximal colon and decreased along its length. The distribution of the different classes of ICC in the aganglionic colons of lethal spotted ( ls/ls) mice was found to be similar in age-matched wild-type controls. There were marked differences in the electrical activities of the colons from ls/ls mutants compared with wild-type controls. In ls/ls aganglionic colons, the circular muscle was electrically quiescent compared with the spontaneous spiking electrical activity of wild-type tissues. In ls/ls aganglionic colons, postjunctional neural responses were greatly affected. Inhibitory junction potentials were absent or excitatory junction potentials inhibited by atropine were observed. In conclusion, the distribution of ICC in the ganglionic and aganglionic regions of the colons from ls/ls mutants appeared similar to that of wild-type controls. The electrical activity and neural responses of the circular layer are significantly different in aganglionic segments of ls/ls mutants.


2016 ◽  
Vol 311 (4) ◽  
pp. G763-G774 ◽  
Author(s):  
Eileen Rodriguez-Tapia ◽  
Alberto Perez-Medina ◽  
Xiaochun Bian ◽  
James J. Galligan

Enteric inhibitory motoneurons use nitric oxide and a purine neurotransmitter to relax gastrointestinal smooth muscle. Enteric P/Q-type Ca2+ channels contribute to excitatory neuromuscular transmission; their contribution to inhibitory transmission is less clear. We used the colon from tottering mice ( tg/tg, loss of function mutation in the α1A pore-forming subunit of P/Q-type Ca2+ channels) to test the hypothesis that P/Q-type Ca2+ channels contribute to inhibitory neuromuscular transmission and colonic propulsive motility. Fecal pellet output in vivo and the colonic migrating motor complex (ex vivo) were measured. Neurogenic circular muscle relaxations and inhibitory junction potentials (IJPs) were also measured ex vivo. Colonic propulsive motility in vivo and ex vivo was impaired in tg/tg mice. IJPs were either unchanged or somewhat larger in tissues from tg/tg compared with wild-type (WT) mice. Nifedipine (L-type Ca2+ channel antagonist) inhibited IJPs by 35 and 14% in tissues from tg/tg and WT mice, respectively. The contribution of N- and R-type channels to neuromuscular transmission was larger in tissues from tg/tg compared with WT mice. The resting membrane potential of circular muscle cells was similar in tissues from tg/tg and WT mice. Neurogenic relaxations of circular muscle from tg/tg and WT mice were similar. These results demonstrate that a functional deficit in P/Q-type channels does not alter propulsive colonic motility. Myenteric neuron L-type Ca2+ channel function increases to compensate for loss of functional P/Q-type Ca2+ channels. This compensation maintains inhibitory neuromuscular transmission and normal colonic motility.


2002 ◽  
Vol 282 (5) ◽  
pp. G904-G917 ◽  
Author(s):  
Nick J. Spencer ◽  
Grant W. Hennig ◽  
Terence K. Smith

Using simultaneous intracellular recordings, we have characterized 1) electrical activity in the longitudinal muscle (LM) of isolated segments of guinea pig distal colon free to contract spontaneously and 2) extent of propagation of spontaneous action potentials around the circumference of the colon. In all animals, rhythmical spontaneous depolarizations (SDs) were recorded that are usually associated with the generation of action potentials. Recordings from pairs of LM cells, separated by 100 μm in the circumferential axis, revealed that each action potential was phase locked at the two electrodes (mean propagation velocity: 3 mm/s). However, at an increased electrode separation distance of 1 mm circumferentially, action potentials and SDs became increasingly uncoordinated at the two recording sites. No SDs or action potentials ever propagated from one circumferential edge to the other (i.e., 13 mm apart). When LM strips were separated from the myenteric plexus and circular muscle, rhythmically firing SDs and action potentials were still recorded. Atropine (1 μM) or tetrodotoxin (1 μM) either reduced the frequency of SDs or temporily abolished activity, whereas nifedipine (1 μM) always abolished SDs and action potentials. Kit-positive interstitial cells of Cajal were present at the level of the myenteric plexus and circular and longitudinal muscle. In summary, SDs and action potentials in LM propagate over discrete localized zones, usually <1 mm around the circumference of the colon. Furthermore, in contrast to the classic slow wave, rhythmic depolarizations in LM appear to be generated by an intrinsic property of the smooth muscle itself and are critically dependent on opening of L-type Ca2+ channels.


Sign in / Sign up

Export Citation Format

Share Document