scholarly journals Offspring Size, Provisioning and Performance as  a Function of Maternal Investment in Direct  Developing Whelks

2021 ◽  
Author(s):  
◽  
Sergio Antonio Carrasco Órdenes

<p>Initial maternal provisioning has pervasive ecological and evolutionary implications for species with direct development, influencing offspring size and energetic content, with subsequent effects on performance, and consequences in fitness for both offspring and mother. Here, using three sympatric marine intertidal direct developing gastropods as model organisms (Cominella virgata, Cominella maculosa and Haustrum scobina) I examined how contrasting strategies of maternal investment influenced development, hatchling size, maternal provisioning and juvenile performance. In these sympatric whelks, duration of intra-capsular development was similar among species (i.e. 10 wk until hatching); nonetheless, differences in provisioning and allocation were observed. Cominella virgata (1 embryo per capsule; ~3 mm shell length [SL]) and C. maculosa (7.7 ± 0.3 embryos per capsule; ~1.5 mm SL) provided their embryos with a jelly-like albumen matrix and all embryos developed. Haustrum scobina encapsulated on average 235 ± 17 embryos per capsule but only ~10 reached the hatching stage (~1.2 mm SL), with the remaining siblings being consumed as nurse embryos, mainly during the first 4 wk of development. Similar chronology in the developmental stages was recognizable among species. Higher growth rates and evident juvenile structures became clear by the second half of development and larval characteristics were less frequently observed. Even after 10 weeks of encapsulation and despite emergent crawling juveniles, some hatchling H. scobina still retained “larval” traits, suggesting that this nurse embryo-based provisioning could result in intracapsular asynchrony of development, and that female of this species would be able to bet-hedge in a higher extent compared with female C. maculosa or C. virgata. Maternal investment in newly laid egg capsules differed among the three study species. The structural lipids phospholipid (PL) and cholesterol (ST) and the energetic lipids aliphatic hydrocarbon (AH), triglycerides (TG), diglycerides (DG) and free fatty acids (FFA) occurred in all three species. Only eggs (and also hatchlings) of the multiencapsulated embryos C. maculosa and H. scobina were provisioned with the energy lipids wax ester (WE) and methyl ester (ME), suggesting an interesting similarity with pelagic larvae of other invertebrates and fish where those lipid classes have also been recorded. Despite differences in hatchling size, the small H. scobina had significantly higher amounts of the energy storage lipid TG compared with C. maculosa and C. virgata, suggesting interesting trade-offs between offspring size and offspring energy resources. H. scobina was the only species that suffered a complete depletion of FFA during development (5th wk), suggesting an additional role of this energetic lipid during the early stages of development. Differences in the amount of lipids among newly laid capsules and siblings within capsules were also detected within species. In both species with multiple embryos per capsule, C. maculosa and H. scobina, these differences were largely explained by variation in TG and PL, enhancing the important role of the major structural (PL) and energy (TG) lipids during the early stages of these whelks, and also providing an integrative approach for evaluating maternally-derived lipids on a perindividual basis in direct developing species with contrasting provisioning and offspring size. Because in direct developers maternal provisioning to the embryos is the primary source of nutrition until offspring enter juvenile life, differences in performance should be closely related with initial provisioning, which in turn may reflect maternal nutritional conditions. Field-based surveys and manipulative experiments in the laboratory showed that different maternal environments (i.e. locations and sites) and contrasting offspring size influenced juvenile performance in different ways for C. virgata and C. maculosa. Despite the large differences in conditions and available resources between the Wellington Harbour and the nearby South Coast, the two locations did not influence the hatchling size of either species, and the most important source of variation was at the smallest scale (i.e. among sites), with substantial variation also occurring within and among females. Between and within species differences in hatching size reflected juvenile performance when fed, regardless of whether subjected to desiccation stress. When starved however, species-specific and size differences in performance were less significant. As has been described for many taxa, large offspring often perform better than small conspecifics; however, because this performance is likely to be context-dependent, understanding the importance of the different scales of variation is crucial for determining how variation in size reflects an organism’s performance. Despite the long recognized role of intra-specific variation in offspring size in mediating subsequent performance, the consequences of inter-specific variation in peroffspring maternal investment for co-occurring taxa have been rarely examined in a predator-prey context. Manipulative experiments in the laboratory with hatchling and juvenile C. virgata and C. maculosa revealed that vulnerability of their early life-stages to common crab predators (i.e. the shore crab Cyclograpsus lavauxi) is highly size-dependent. When predator size was evaluated, small crabs were unable to eat hatchlings of either whelk species. Medium and large shore crabs consumed both prey species; however, hatchlings of C. virgata were less vulnerable to predation by medium crabs than large ones, and C. maculosa were equally vulnerable to both sizes of crabs. In hatchlings of both prey species the shell length and shell thickness increased over time; however, only C. virgata reached a size refuge from predation after two months posthatch. Results showed that vulnerability to predators can be mitigated by larger sizes and thicker shells at hatch; nonetheless, other species-specific traits such as juvenile growth rates, may also play key roles in determining the vulnerability of hatchling and juvenile snails when exposed to shell-crushing predators. Overall, these findings suggest that when defining offspring size, provisioning and performance relationships, many context-dependent scenarios are likely to arise. Therefore examining the early life-history stages of direct developing whelks with contrasting maternal investment under an integrative morphological, physiological and experimental approach, allowed a better understanding of how these complex relationships arises and how mediated the species life-history in terms of offspring size, maternal provisioning and subsequent juvenile performance.</p>

2021 ◽  
Author(s):  
◽  
Sergio Antonio Carrasco Órdenes

<p>Initial maternal provisioning has pervasive ecological and evolutionary implications for species with direct development, influencing offspring size and energetic content, with subsequent effects on performance, and consequences in fitness for both offspring and mother. Here, using three sympatric marine intertidal direct developing gastropods as model organisms (Cominella virgata, Cominella maculosa and Haustrum scobina) I examined how contrasting strategies of maternal investment influenced development, hatchling size, maternal provisioning and juvenile performance. In these sympatric whelks, duration of intra-capsular development was similar among species (i.e. 10 wk until hatching); nonetheless, differences in provisioning and allocation were observed. Cominella virgata (1 embryo per capsule; ~3 mm shell length [SL]) and C. maculosa (7.7 ± 0.3 embryos per capsule; ~1.5 mm SL) provided their embryos with a jelly-like albumen matrix and all embryos developed. Haustrum scobina encapsulated on average 235 ± 17 embryos per capsule but only ~10 reached the hatching stage (~1.2 mm SL), with the remaining siblings being consumed as nurse embryos, mainly during the first 4 wk of development. Similar chronology in the developmental stages was recognizable among species. Higher growth rates and evident juvenile structures became clear by the second half of development and larval characteristics were less frequently observed. Even after 10 weeks of encapsulation and despite emergent crawling juveniles, some hatchling H. scobina still retained “larval” traits, suggesting that this nurse embryo-based provisioning could result in intracapsular asynchrony of development, and that female of this species would be able to bet-hedge in a higher extent compared with female C. maculosa or C. virgata. Maternal investment in newly laid egg capsules differed among the three study species. The structural lipids phospholipid (PL) and cholesterol (ST) and the energetic lipids aliphatic hydrocarbon (AH), triglycerides (TG), diglycerides (DG) and free fatty acids (FFA) occurred in all three species. Only eggs (and also hatchlings) of the multiencapsulated embryos C. maculosa and H. scobina were provisioned with the energy lipids wax ester (WE) and methyl ester (ME), suggesting an interesting similarity with pelagic larvae of other invertebrates and fish where those lipid classes have also been recorded. Despite differences in hatchling size, the small H. scobina had significantly higher amounts of the energy storage lipid TG compared with C. maculosa and C. virgata, suggesting interesting trade-offs between offspring size and offspring energy resources. H. scobina was the only species that suffered a complete depletion of FFA during development (5th wk), suggesting an additional role of this energetic lipid during the early stages of development. Differences in the amount of lipids among newly laid capsules and siblings within capsules were also detected within species. In both species with multiple embryos per capsule, C. maculosa and H. scobina, these differences were largely explained by variation in TG and PL, enhancing the important role of the major structural (PL) and energy (TG) lipids during the early stages of these whelks, and also providing an integrative approach for evaluating maternally-derived lipids on a perindividual basis in direct developing species with contrasting provisioning and offspring size. Because in direct developers maternal provisioning to the embryos is the primary source of nutrition until offspring enter juvenile life, differences in performance should be closely related with initial provisioning, which in turn may reflect maternal nutritional conditions. Field-based surveys and manipulative experiments in the laboratory showed that different maternal environments (i.e. locations and sites) and contrasting offspring size influenced juvenile performance in different ways for C. virgata and C. maculosa. Despite the large differences in conditions and available resources between the Wellington Harbour and the nearby South Coast, the two locations did not influence the hatchling size of either species, and the most important source of variation was at the smallest scale (i.e. among sites), with substantial variation also occurring within and among females. Between and within species differences in hatching size reflected juvenile performance when fed, regardless of whether subjected to desiccation stress. When starved however, species-specific and size differences in performance were less significant. As has been described for many taxa, large offspring often perform better than small conspecifics; however, because this performance is likely to be context-dependent, understanding the importance of the different scales of variation is crucial for determining how variation in size reflects an organism’s performance. Despite the long recognized role of intra-specific variation in offspring size in mediating subsequent performance, the consequences of inter-specific variation in peroffspring maternal investment for co-occurring taxa have been rarely examined in a predator-prey context. Manipulative experiments in the laboratory with hatchling and juvenile C. virgata and C. maculosa revealed that vulnerability of their early life-stages to common crab predators (i.e. the shore crab Cyclograpsus lavauxi) is highly size-dependent. When predator size was evaluated, small crabs were unable to eat hatchlings of either whelk species. Medium and large shore crabs consumed both prey species; however, hatchlings of C. virgata were less vulnerable to predation by medium crabs than large ones, and C. maculosa were equally vulnerable to both sizes of crabs. In hatchlings of both prey species the shell length and shell thickness increased over time; however, only C. virgata reached a size refuge from predation after two months posthatch. Results showed that vulnerability to predators can be mitigated by larger sizes and thicker shells at hatch; nonetheless, other species-specific traits such as juvenile growth rates, may also play key roles in determining the vulnerability of hatchling and juvenile snails when exposed to shell-crushing predators. Overall, these findings suggest that when defining offspring size, provisioning and performance relationships, many context-dependent scenarios are likely to arise. Therefore examining the early life-history stages of direct developing whelks with contrasting maternal investment under an integrative morphological, physiological and experimental approach, allowed a better understanding of how these complex relationships arises and how mediated the species life-history in terms of offspring size, maternal provisioning and subsequent juvenile performance.</p>


2015 ◽  
Vol 282 (1819) ◽  
pp. 20151946 ◽  
Author(s):  
Amanda K. Pettersen ◽  
Craig R. White ◽  
Dustin J. Marshall

Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.


2020 ◽  
Author(s):  
Theresa Schabacker ◽  
Oliver Lindecke ◽  
Sofia Rizzi ◽  
Lara Marggraf ◽  
Gunārs Pētersons ◽  
...  

AbstractIntegrating information on species-specific sensory perception together with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent animal model to investigate intra-specific variation in environmental cue sampling. Here, we developed anin situroost-like novel environment assay for tree-cave roosting bats. We repeatedly tested 52 individuals of the migratory bat species,Pipistrellus nathusii, across 24 hours, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intra-specific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity given their spatial activity, a behavioral response we term ‘acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theresa Schabacker ◽  
Oliver Lindecke ◽  
Sofia Rizzi ◽  
Lara Marggraf ◽  
Gunārs Pētersons ◽  
...  

AbstractIntegrating information on species-specific sensory perception with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent model system to investigate intraspecific variation in environmental cue sampling. Here, we developed an in situ roost-like novel environment assay for tree-roosting bats. We repeatedly tested 52 individuals of the migratory bat species, Pipistrellus nathusii, across 24 h, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intraspecific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity, given their spatial activity, a behavioral response we term ’acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment.


2018 ◽  
Vol 38 (2) ◽  
pp. 216-226 ◽  
Author(s):  
VG Nielsen ◽  
N Frank

Venomous snake bite and subsequent coagulopathy is a significant source of morbidity and mortality worldwide. The gold standard to treat coagulopathy caused by these venoms is the administration of antivenom; however, despite this therapy, coagulopathy still occurs and recurs. Of interest, our laboratory has demonstrated in vitro and in vivo that coagulopathy-inducing venom exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the African genera Atheris, Atractaspis, Causus, Cerastes, Echis, and Macrovipera that have no or limited antivenoms available could be inhibited with CO or with the metheme-inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms were exposed in isolation to CO or PHA. Eight species were found to have procoagulant activity consistent with the generation of human thrombin, while one was likely fibrinogenolytic. All venoms were significantly inhibited by CO/PHA with species-specific variation noted. These data demonstrate indirectly that the heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, future investigation is warranted to determine if heme could serve as a potential therapeutic target to be modulated during treatment of envenomation by hemotoxic enzymes.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2017 ◽  
Vol 16 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Anaïs Thibault Landry ◽  
Marylène Gagné ◽  
Jacques Forest ◽  
Sylvie Guerrero ◽  
Michel Séguin ◽  
...  

Abstract. To this day, researchers are debating the adequacy of using financial incentives to bolster performance in work settings. Our goal was to contribute to current understanding by considering the moderating role of distributive justice in the relation between financial incentives, motivation, and performance. Based on self-determination theory, we hypothesized that when bonuses are fairly distributed, using financial incentives makes employees feel more competent and autonomous, which in turn fosters greater autonomous motivation and lower controlled motivation, and better work performance. Results from path analyses in three samples supported our hypotheses, suggesting that the effect of financial incentives is contextual, and that compensation plans using financial incentives and bonuses can be effective when properly managed.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


2018 ◽  
Vol 12 (2) ◽  
pp. 60-63
Author(s):  
Mariana Sandu ◽  
Stefan Mantea

Abstract Agri-food systems include branching ramifications, which connect in the upstream the input suppliers with farmers, and downstream farmers, processors, retailers and consumers. In the last decades, at the level of the regions, food systems have undergone rapid transformation as a result of technological progress. The paper analyzes the changes made to the structure, behavior and performance of the agri-food system and the impact on farmers and consumers. Also, the role of agricultural research as a determinant factor of transformation of agri-food system is analyzed. The research objective is to develop technologies that cover the entire food chain (from farm to fork) and meet the specific requirements of consumers (from fork to farm) through scientific solutions in line with the principles of sustainable agriculture and ensuring the safety and food safety of the population.


Sign in / Sign up

Export Citation Format

Share Document