protein switch
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Harsimranjit Sekhon ◽  
Stewart N Loh

DNA-based devices are relatively straightforward to design by virtue of their predictable folding, but they lack biological activity. Conversely, protein-based devices offer a myriad of biological functions but are much more difficult to design due to their complex folding. This study bridges the fields of DNA engineering and protein engineering to generate a protein switch that is activated by a specific DNA sequence. A single protein switch, engineered from nanoluciferase using the alternate frame folding mechanism and herein called nLuc-AFF, is paired with different DNA technologies to create a biosensor for a DNA or RNA sequence of choice, sensors for serotonin and ATP, and a computational device that processes two DNA inputs. nLuc-AFF is a genetically-encoded, ratiometric, blue/green-luminescent biosensor whose output can be quantified by cell phone camera. nLuc-AFF is not falsely activated by decoy DNA and it retains full ratiometric readout in 100 % serum. The design approach can be applied to other proteins and enzymes to convert them into DNA-activated switches.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2805-2805
Author(s):  
Roland Windisch ◽  
Sarah Soliman ◽  
Adrian Hoffmann ◽  
Linping Chen-Wichmann ◽  
Sebastian Lutz ◽  
...  

Abstract Long-term ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells (HSPCs) proves to be unfeasible as cellular differentiation occurs when HSPCs are detached from their supporting bone marrow stem cell niche. This issue renders it difficult to make use of the proliferation capacity of HSPCs to subsequently produce functional blood cells in relevant numbers, e.g. for cell therapy approaches. To circumvent this challenge, leukemia-associated chimeric transcription factors, including MLL fusion proteins, can be exploited for their pronounced ability to propel cell proliferation while preserving cell immaturity. By designing the protein's activity controllable, the immature state can be abolished at an arbitrary point in time enabling terminal differentiation. In this study, we employed the fusion gene mixed lineage leukemia/eleven nineteen leukemia (MLL-ENL) for engineering an inducible protein switch. For this purpose, we fused the coding sequence of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the transcription factor MLL-ENL and subsequently expressed the protein switch (DD-MLL-ENL) in human CD34+ HSPCs derived from adult healthy donors. In the presence of the specific ligand Shield1, DD-mediated protein degradation is prevented leading to massive and long-term expansion of HSPC-derived late monocytic precursors in the presence of IL-3, IL-6, SCF, FLT3-L, TPO and GM-CSF. The cells do not exhibit additional driver mutations, feature a normal karyotype and telomere length, and sustain immaturity that is strictly dependent on Shield1 supplementation every other day even after two years of ex vivo culture. Upon Shield1 deprivation, the cells completely lost self-renewal and colony-forming properties and spontaneously differentiated. By changing the cytokines to GM-CSF in combination with IFN-γ and LPS we differentiated the progenitor cells into macrophages (MΦ) (Fig. 1 A, B). Immunophenotypic characterization revealed upregulation of the monocyte/macrophage-associated surface markers CD14, CD80, CD86, CD163 and MHC class I and II, concordant with monocytic morphology as judged by cytospin preparations. Analysis of the transcription of selected inflammatory genes, including IL-6 and IL-10, revealed overlapping M1 and M2 macrophage characteristics. Furthermore, mRNA expression profiles using nCounter Systems technology covering a total of 770 myeloid innate immunity-related genes proves the cells' identity as differentiated phagocytes shown by upregulation of gene clusters involved in Fc receptor signaling, TLR signaling, antigen presentation and T cell activation. In functional assays, we demonstrated the ability of the obtained cells to migrate towards the chemokine CCL2 in a 3D chemotaxis assay, attach to VCAM-1 under flow and shear stress and produce reactive oxygen species. Regarding the cells' phagocytic capability, we could verify the uptake of bacterial particles as well as apoptotic cells in efferocytosis assays. Finally, we demonstrated IgG Fc region recognition and binding by the expressed Fcγ receptors enabling phagocytosis of lymphoblastic tumor cells, including Daudi, Raji and patient-derived MCL cells in an antibody-dependent manner using rituximab (RTX), daratumumab (Dara) and trastuzumab (Trast) as a negative control (Fig. 1C). Overall, we could demonstrate the conversion of a harmful leukemic transcription factor into a useful molecular tool for large-scale ex vivo production of functional blood cells. Such engineered controllable protein switches might have the potential to be employed as molecular tools to produce functional immune cells for cell-based immunotherapeutic approaches. Figure 1 Figure 1. Disclosures Redondo Monte: Minaris Regenerative Medicine: Current Employment. Beier: Alexion: Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees; Jazz: Other: Travel reembursement. Weigert: Janssen: Speakers Bureau; Epizyme: Membership on an entity's Board of Directors or advisory committees; Roche: Research Funding. Greif: AstraZeneca: Honoraria.


2021 ◽  
Author(s):  
Joshua T Atkinson ◽  
Lin Su ◽  
Xu Zhang ◽  
George N. Bennett ◽  
Jonathan Silberg ◽  
...  

Real-time chemical sensing is needed to counter the global threats posed by pollution. We combine synthetic biology and materials engineering to develop a living bioelectronic sensor platform with minute detection times. Escherichia coli was programmed to reduce an electrode in a chemical-dependent manner using a modular, eight-component, synthetic electron transport chain. This strain produced significantly more current upon exposure to thiosulfate, an anion that causes microbial blooms. Incorporating a protein switch into the synthetic pathway and encapsulation of microbes with electrodes and conductive nanomaterials yielded a living bioelectronic sensor that could detect an endocrine disruptor within two minutes in riverine water, implicating the signal as mass transfer limited. These findings provide a new platform for miniature, low-power sensors that safeguard ecological and human health.


2021 ◽  
Author(s):  
Junfeng Ma ◽  
Xiang Cheng ◽  
Zhonghe Xu ◽  
Yikan Zhang ◽  
Jaione Valle ◽  
...  

2020 ◽  
Vol 9 (9) ◽  
pp. 2316-2323
Author(s):  
Robin L. Kirkpatrick ◽  
Kieran Lewis ◽  
Robert A. Langan ◽  
Marc J. Lajoie ◽  
Scott E. Boyken ◽  
...  

2020 ◽  
Vol 4 (9) ◽  
pp. 1950-1964 ◽  
Author(s):  
Xiaomei Wang ◽  
Daniel L. Jasinski ◽  
Jan L. Medina ◽  
David M. Spencer ◽  
Aaron E. Foster ◽  
...  

Natural killer (NK) cells expressing chimeric antigen receptors (CARs) are a promising anticancer immunotherapy, leveraging both innate NK cell antitumor activity and target-specific cytotoxicity. Inducible MyD88/CD40 (iMC) is a potent, rimiducid-regulated protein switch that has been deployed previously as a T-cell activator to enhance proliferation and persistence of CAR-modified T cells. In this study, iMC was extended to CAR-NK cells to enhance their growth and augment cytotoxicity against tumor cells. iMC-activated NK cells substantially increased cytokine and chemokine secretion and displayed higher levels of perforin and granzyme B degranulation. In addition, iMC activation could be coupled with ectopic interleukin-15 (IL-15) to further enhance NK cell proliferation. When coexpressed with a target-specific CAR (CD123 or BCMA), this IL-15/iMC system showed further augmented antitumor activity through enhanced CAR-NK cell expansion and cytolytic activity. To protect against potential toxicity from engineered NK cells, an orthogonal rapamycin-regulated Caspase-9 (iRC9) was included in a 4-gene, dual-switch platform. After infusion of dual-switch NK cells, pharmacologic iRC9 dimerization led to rapid elimination of a majority of expanded transduced NK cells. Thus, CAR-NK cells utilizing dual molecular switches provide an innovative and effective approach to cancer immunotherapy with controlled specificity, efficacy, and safety.


Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S33
Author(s):  
R. Windisch ◽  
S. Soliman ◽  
A. Hoffmann ◽  
L. Chen-Wichmann ◽  
C. Kellner ◽  
...  

Nature ◽  
2020 ◽  
Vol 579 (7798) ◽  
pp. E8-E8 ◽  
Author(s):  
Andrew H. Ng ◽  
Taylor H. Nguyen ◽  
Mariana Gómez-Schiavon ◽  
Galen Dods ◽  
Robert A. Langan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document