scholarly journals Unveiling induced folding of intrinsically disordered proteins – Protein engineering, frustration and emerging themes

2022 ◽  
Vol 72 ◽  
pp. 153-160
Author(s):  
Francesca Malagrinò ◽  
Awa Diop ◽  
Livia Pagano ◽  
Caterina Nardella ◽  
Angelo Toto ◽  
...  
2020 ◽  
Author(s):  
Paul Robustelli ◽  
Stefano Piana ◽  
David E. Shaw

AbstractIntrinsically disordered proteins (IDPs), which in isolation do not adopt a well-defined tertiary structure but instead populate a structurally heterogeneous ensemble of interconverting states, play important roles in many biological pathways. IDPs often fold into ordered states upon binding to their physiological interaction partners (a so-called “folding-upon-binding” process), but it has proven difficult to obtain an atomic-level description of the structural mechanisms by which they do so. Here, we describe in atomic detail the folding-upon-binding mechanism of an IDP segment to its binding partner, as observed in unbiased molecular dynamics simulations. In our simulations, we observed over 70 binding and unbinding events between the α-helical molecular recognition element (α-MoRE) of the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the measles virus phosphoprotein complex. We found that folding-upon-binding primarily occurred through induced-folding pathways (in which intermolecular contacts form before or concurrently with the secondary structure of the disordered protein)—an observation supported by previous experiments—and that the transition state ensemble was characterized by the formation of just a few key intermolecular contacts, and was otherwise highly structurally heterogeneous. We found that when a large amount of helical content was present early in a transition path, NTAIL typically unfolded, then refolded after additional intermolecular contacts formed. We also found that, among conformations with similar numbers of intermolecular contacts, those with less helical content had a higher probability of ultimately forming the native complex than conformations with more helical content, which were more likely to unbind. These observations suggest that even after intermolecular contacts have formed, disordered regions can have a kinetic advantage over folded regions in the folding-upon-binding process.


2020 ◽  
Vol 117 (10) ◽  
pp. 5291-5297 ◽  
Author(s):  
Peter J. Schnatz ◽  
Joseph M. Brisendine ◽  
Craig C. Laing ◽  
Bernard H. Everson ◽  
Cooper A. French ◽  
...  

Heterotropic allosteric activation of protein function, in which binding of one ligand thermodynamically activates the binding of another, different ligand or substrate, is a fundamental control mechanism in metabolism and as such has been a long-aspired capability in protein design. Here we show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into an allosteric ligand- and counterion-gated conformational molecular switch. To demonstrate this we first modified the designed helical bundle hemoprotein H4, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. As a result of the high surface-charge density, ligand binding to this protein is allosterically activated up to 1,300-fold by low concentrations of divalent cations and the polyamine spermine. To extend this process further using a natural protein, we similarly modified Escherichia coli cytochrome b562 and the resulting protein behaves in a like manner. These simple model systems not only establish a set of general engineering principles which can be used to convert natural and designed soluble proteins into allosteric molecular switches useful in biodesign, sensing, and synthetic biology, the behavior we have demonstrated––functional activation of supercharged intrinsically disordered proteins by low concentrations of multivalent ions––may be a control mechanism utilized by Nature which has yet to be appreciated.


2012 ◽  
Vol 393 (4) ◽  
pp. 259-274 ◽  
Author(s):  
Diana M. Mitrea ◽  
Mi-Kyung Yoon ◽  
Li Ou ◽  
Richard W. Kriwacki

Abstract The classic structure-function paradigm has been challenged by a recently identified class of proteins: intrinsically disordered proteins (IDPs). Despite their lack of stable secondary or tertiary structure, IDPs are prevalent in all forms of life and perform myriad cellular functions, including signaling and regulation. Importantly, disruption of IDP homeostasis is associated with numerous human diseases, including cancer and neurodegeneration. Despite wide recognition of IDPs, the molecular mechanisms underlying their functions are not fully understood. Here we review the structural features and disorder-function relationships for p21 and p27, two cyclin-dependent kinase (Cdk) regulators involved in controlling cell division and fate. Studies of p21 bound to Cdk2/cyclin A revealed that a helix stretching mechanism mediates binding promiscuity. Further, investigations of Tyr88-phosphorylated p27 identified a signaling conduit that controls cell division and is disrupted in certain cancers. These mechanisms rely upon a balance between nascent structure in the free state, induced folding upon binding, and persistent flexibility within functional complexes. Although these disorder-function relationships are likely to be recapitulated in other IDPs, it is also likely that the vocabulary of their mechanisms is much more extensive than is currently understood. Further study of the physical properties of IDPs and elucidation of their links with function are needed to fully understand the mechanistic language of IDPs.


2020 ◽  
Vol 21 (10) ◽  
pp. 3484 ◽  
Author(s):  
Francesca Malagrinò ◽  
Lorenzo Visconti ◽  
Livia Pagano ◽  
Angelo Toto ◽  
Francesca Troilo ◽  
...  

Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.


2020 ◽  
Vol 295 (19) ◽  
pp. 6586-6593 ◽  
Author(s):  
Angelo Toto ◽  
Francesca Malagrinò ◽  
Lorenzo Visconti ◽  
Francesca Troilo ◽  
Livia Pagano ◽  
...  

Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.


Sign in / Sign up

Export Citation Format

Share Document