AI Perspectives
Latest Publications


TOTAL DOCUMENTS

12
(FIVE YEARS 12)

H-INDEX

1
(FIVE YEARS 1)

Published By Springer Science And Business Media LLC

2523-398x

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicolas Scheiner ◽  
Florian Kraus ◽  
Nils Appenrodt ◽  
Jürgen Dickmann ◽  
Bernhard Sick

AbstractAutomotive radar perception is an integral part of automated driving systems. Radar sensors benefit from their excellent robustness against adverse weather conditions such as snow, fog, or heavy rain. Despite the fact that machine-learning-based object detection is traditionally a camera-based domain, vast progress has been made for lidar sensors, and radar is also catching up. Recently, several new techniques for using machine learning algorithms towards the correct detection and classification of moving road users in automotive radar data have been introduced. However, most of them have not been compared to other methods or require next generation radar sensors which are far more advanced than current conventional automotive sensors. This article makes a thorough comparison of existing and novel radar object detection algorithms with some of the most successful candidates from the image and lidar domain. All experiments are conducted using a conventional automotive radar system. In addition to introducing all architectures, special attention is paid to the necessary point cloud preprocessing for all methods. By assessing all methods on a large and open real world data set, this evaluation provides the first representative algorithm comparison in this domain and outlines future research directions.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Philippe Cedraz Lopes ◽  
Juliana Carla Santos da Silva ◽  
Lílian Lefol Nani Guarieiro ◽  
Davidson Martins Moreira

AbstractAn evolution of smart and connected cars allows the advancement of smart cities and new business models for automakers. The main objective of this article was to understand the capability of Brazilian vehicles to collect meteorological data, through an observational approach of vehicle technologies and an applied study of automatic weather stations. In 2020, when the world was affected by the COVID-19 pandemic, many studies were conducted in order to find a possible relationship between these meteorological data and the incidence of the novel coronavirus. Through this study, meteorological variables that are collected by the stations, as well as vehicles, were compared in order to evaluate the potential of data combination, in addition to the analysis of the influence of these variables in pandemic cases like COVID-19. In this context, it was understood the vehicle’s advancement as a mobile sensor and the usage of vehicle’s data as a tool for a better understanding of the COVID-19 pandemic.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José Roberto Dantas da Silva Júnior ◽  
Rizzieri Pedruzzi ◽  
Filipe Milani de Souza ◽  
Patrick Silva Ferraz ◽  
Daniel Guimarães Silva ◽  
...  

AbstractThe current scenario of a global pandemic caused by the virus SARS-CoV-2 (COVID19), highlights the importance of water studies in sewage systems. In Brazil, about 35 million Brazilians still do not have treated water and more than 100 million do not have basic sanitation. These people, already exposed to a range of diseases, are among the most vulnerable to COVID-19. According to studies, places that have poor sanitation allow the proliferation of the coronavirus, been observed a greater number of infected people being found in these regions. This social problem is strongly related to the lack of effective management of water resources, since they are the sources for the population's water supply and the recipients of effluents stemming from sanitation services (household effluents, urban drainage and solid waste). In this context, studies are needed to develop technologies and methodologies to improve the management of water resources. The application of tools such as artificial intelligence and hydrometeorological models are emerging as a promising alternative to meet the world's needs in water resources planning, assessment of environmental impacts on a region's hydrology, risk prediction and mitigation. The main model of this type, WRF-Hydro Weather Research and Forecasting Model), represents the state of the art regarding water resources, as well as being the object of study of small and medium-sized river basins that tend to have less water availability. hydrometeorological data and analysis. Thus, this article aims to analyze the feasibility of a web tool for greater software usability and computational cost use, making it possible to use the WRF-Hydro model integrated with Artificial Intelligence tools for short and medium term, optimizing the time of simulations with reduced computational cost, so that it is able to monitor and generate a predictive analysis of water bodies in the MATOPIBA region (Maranhão-Tocantins-Piauí-Bahia), constituting an instrument for water resources management. The results obtained show that the WRF-Hydro model proves to be an efficient computational tool in hydrometeorological simulation, with great potential for operational, research and technological development purposes, being considered viable to implement the web tool for analysis and management of water resources and consequently, assist in monitoring and mitigating the number of cases related to the current COVID-19 pandemic. This research are in development and represents a preliminary results with future perspectives.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Milton C. Soares ◽  
Cristiano V. Ferreira ◽  
Thiago B. Murari

AbstractCOVID-19 outbreak has heavily impacted the manufacturing industry, including Brazilian Automotive Industry. The effects of COVID-19 created restrictions in several industry processes as supply chain. On the other hand, several industry 4.0 technologies is able to support the industry supply chain activities in the COVID 19 scenarios, as well it may contributed for the automotive industry recovery and it will define the next steps of this industry. A supply chain is a network between a company and its suppliers to produce and distribute a specific product to the final buyer. Industry 4.0 is related to the technology development and the digitalization process that improve significantly productivity. Considering the automotive process, an important reference model is described in Advanced Product Quality Planning and Control Plan, that is a manual that communicate the guidelines of the product quality planning and control plan for internal and external suppliers. In this scenario, this paper evaluated the current situation and the future outlook for the adoption of Industry 4.0 technologies in the automotive OEM post-pandemic scenario on the point of view of automotive specialists. The results of this research provide an overview of the current situation and the future outlook for the usage of Industry 4.0 technologies by the Brazilian Northeast automotive OEM, from the perspective of manufacturing engineering experts on APQP.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yujiang He ◽  
Bernhard Sick

AbstractCatastrophic forgetting means that a trained neural network model gradually forgets the previously learned tasks when being retrained on new tasks. Overcoming the forgetting problem is a major problem in machine learning. Numerous continual learning algorithms are very successful in incremental learning of classification tasks, where new samples with their labels appear frequently. However, there is currently no research that addresses the catastrophic forgetting problem in regression tasks as far as we know. This problem has emerged as one of the primary constraints in some applications, such as renewable energy forecasts. This article clarifies problem-related definitions and proposes a new methodological framework that can forecast targets and update itself by means of continual learning. The framework consists of forecasting neural networks and buffers, which store newly collected data from a non-stationary data stream in an application. The changed probability distribution of the data stream, which the framework has identified, will be learned sequentially. The framework is called CLeaR (Continual Learning for Regression Tasks), where components can be flexibly customized for a specific application scenario. We design two sets of experiments to evaluate the CLeaR framework concerning fitting error (training), prediction error (test), and forgetting ratio. The first one is based on an artificial time series to explore how hyperparameters affect the CLeaR framework. The second one is designed with data collected from European wind farms to evaluate the CLeaR framework’s performance in a real-world application. The experimental results demonstrate that the CLeaR framework can continually acquire knowledge in the data stream and improve the prediction accuracy. The article concludes with further research issues arising from requirements to extend the framework.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Thomas M. Roehr ◽  
Daniel Harnack ◽  
Hendrik Wöhrle ◽  
Felix Wiebe ◽  
Moritz Schilling ◽  
...  

AbstractIn this paper we introduce Q-Rock, a development cycle for the automated self-exploration and qualification of robot behaviors. With Q-Rock, we suggest a novel, integrative approach to automate robot development processes. Q-Rock combines several machine learning and reasoning techniques to deal with the increasing complexity in the design of robotic systems. The Q-Rock development cycle consists of three complementary processes: (1) automated exploration of capabilities that a given robotic hardware provides, (2) classification and semantic annotation of these capabilities to generate more complex behaviors, and (3) mapping between application requirements and available behaviors. These processes are based on a graph-based representation of a robot’s structure, including hardware and software components. A central, scalable knowledge base enables collaboration of robot designers including mechanical, electrical and systems engineers, software developers and machine learning experts. In this paper we formalize Q-Rock’s integrative development cycle and highlight its benefits with a proof-of-concept implementation and a use case demonstration.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Stephen J. DeCanio

Abstract Alan Turing’s 1950 paper, “Computing Machinery and Intelligence,” contains much more than its proposal of the “Turing Test.” Turing imagined the development of what we today call AI by a process akin to the education of a child. Thus, while Turing anticipated “machine learning,” his prescience brings to the foreground the yet unsolved problem of how humans might teach or shape AIs to behave in ways that align with moral standards. Part of the teaching process is likely to entail AIs’ absorbing lessons from human writings. Natural language processing tools are one of the ways computer systems extract knowledge from texts. An example is given of how one such technique, Latent Dirichlet Allocation, can draw out the most prominent themes from works of classical political theory.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Frank Kirchner

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Marco Barenkamp ◽  
Jonas Rebstadt ◽  
Oliver Thomas

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Tim Dahmen ◽  
Patrick Trampert ◽  
Faysal Boughorbel ◽  
Janis Sprenger ◽  
Matthias Klusch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document