Journal of Proteomics and Genomics research
Latest Publications


TOTAL DOCUMENTS

25
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Published By Open Access Pub

2326-0793

2021 ◽  
Vol 2 (3) ◽  
pp. 13-17
Author(s):  
Leonid Tarassishin

50 years ago the Enzyme Immunoassay Enzyme-Linked Immunosorbent Assay, mostly known as ELISA was developed. This is a powerful but simple method that is very widely used in the diagnostic practice, as well as in biomedical research. During this time a number of ELISA modification were developed that significantly increased its properties, especially the senstivity, such as avidin-biotin assay, immuno-PCR, nano-ELISA and finally, the digital ELISA. This short review describes the principles of ELISA and the evolution from a conventional assay to the modern ultra-sensitive method. Most of the immunological methods have two components: antigen and antibody. The high specificity of their interaction gives a possibility to detect one of them if other one is included in the reaction as a specific partner. The simplest method for antigen detection in the presence of the antibody is immune diffusion (radial immune diffusion in that case), which practically the formation of precipitate of the “antigen-antibody” complex, when the target antigen diffuses from well into agarose containing the specific antibody. Unfortunately, this assay, as well as other traditional methods, like hemagglutination or complement fixation, have a low sensitivity and are unwieldy.


2018 ◽  
Vol 2 (1) ◽  
pp. 41-111
Author(s):  
Mohammad Saad Zaghloul Salem

All aspects of life activities in living cells are mediated/executed and regulated by a vast number of networks, comprising a wide spectrum of components, starting with simple biomolecules and ending with the whole organism, and functioning within a precisely organized tight framework. Proper mediation of cellular activities necessitates their inclusion within the context of structured and organized network systems capable of regulating/coordinating and synchronizing the countless numbers of biological processes occurring within living cells. The number of biological networks and pathways within the living cell is considerably huge, being dependent on the structural complexity and functional capabilities of the cell. Pathogenesis and progression of human diseases result from functional disturbances of biological networks within the cell as disturbed network function leads to deleterious effects on physiological processes dependent on, and mediated by, affected network(s). Ensuing pathological processes, defined by the nature of disturbed networks and the specific organs or tissues affected, pave the way for the development of pathognomonic and characteristic disease entities. As most network functions are dependent on relatively small number of key regulatory biomolecules, i.e. enzymes/proteins and signal transducing factors, it follows that functional disturbances of biological networks and pathogenesis of disease states can be attributed, in most instances, to quantitative and/or qualitative abnormalities of these key regulatory molecules. Study and analysis of the structural designs and the functional mechanisms of biological networks would have crucial and important impacts on many theoretical and applied aspects of biology, in general, and of medical sciences in particular. Meticulous study of biological networks represents an important and integral aspect in study of biology. Interpretation and analysis of key information deduced from observing and analyzing structural designs and functional characteristics and dynamics of biological networks discloses and defines the basic framework within which life activities in living cells are initiated, adapted to physiological requirements, maintained, and terminated upon completion of their aims. More important, however, is the contribution of this information to proper understanding of the different mechanisms responsible for regulating and synchronizing the functions and performances of the vast spectrum of different network categories within the cell. In addition to its vital scientific significance, discovering and defining the key pivotal structural and regulatory molecules within life-mediating networks, and along different pathways responsible for controlling functional dynamics of the network, represent an indispensable diagnostic approach insistent for designing proper therapeutic approaches to diseases caused by network defects.


Author(s):  
Pervez Anwar ◽  
Ayesha Javed ◽  
Izba Amjad ◽  
Iqra Arif ◽  
Attiqa Sadiqa ◽  
...  

Human proteome project was revolutionized about 40 years ago with purpose of summarizing whole proteomic data at one place. It was launched after human genome project to map and observe all proteins. The goal related proteomic study is to draft the entire human proteome in disease diagnosis by using bioinformatics tools. Pillars of human proteome project provide different databases related to proteins at transcriptional and translational level. Human proteome organization(HUPO) published biology disease HUPO whose aim is to measure protein and proteome by life and processes related to human diseases. Different human organ like plasma, liver, brain and diabetic base project are used to characterize human disease and health. Major data resources accumulated in databases like peptides Atlas, GPMDB and neXtProt for proteins. Matrices of human proteome project identify and characterize the protein products as Post translational modification (PTM), splice various isoforms from 20,300 proteins. Matrices related to different years make proteomes counterpart by magnify the research biomedical community with high output of instruments and specimen pre-analytical protocols. CALIPHO multidisciplinary group provides information about protein complexities, interactions, function and structure complexities after Uniport and Swissprot. Different bioinformatics tools are used for structural and functional annotations of protein, disease diagnosis and mutations due to protein. Extensive study of human proteome project has been proved helpful in disease treatment at translational and post- translational levels. In future, human proteome project along with bioinformatics will include protein profiling, biomarkers, Mass spectrophotometer technique and cross analysis of different proteome projects.


2017 ◽  
Vol 2 (1) ◽  
pp. 13-21 ◽  
Author(s):  
P. Leibowitz Marcia ◽  
Guilherme C. Tavares ◽  
Felipe L. Pereira ◽  
Cristiana Perdigão ◽  
Vasco Azevedo ◽  
...  

2016 ◽  
Vol 1 (4) ◽  
pp. 60-66
Author(s):  
Ertugrul Dalgic ◽  
Irene Li ◽  
Aritro Nath ◽  
Christina Chan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document