scholarly journals Gastrointestinal Tolerability of the Selective Cyclooxygenase-2 (COX-2) Inhibitor Rofecoxib Compared With Nonselective COX-1 and COX-2 Inhibitors in Osteoarthritis

2000 ◽  
Vol 160 (19) ◽  
pp. 2998 ◽  
Author(s):  
Douglas J. Watson ◽  
Sean E. Harper ◽  
Peng-Liang Zhao ◽  
Hui Quan ◽  
James A. Bolognese ◽  
...  
1995 ◽  
Vol 73 (11) ◽  
pp. 1561-1567 ◽  
Author(s):  
L. Charette ◽  
C. Misquitta ◽  
J. Guay ◽  
D. Riendeau ◽  
T. R. Jones

Indomethacin and related nonsteroidal anti-inflammatory drugs relax prostanoid-dependent intrinsic tone of isolated guinea pig trachea by inhibiting cyclooxygenase (COX). Recently, a second isoform of COX (COX-2) was discovered, which differed from COX-1 with respect to protein structure, transcriptional regulation, and susceptibility to inhibition by pharmacological agents. It is now known that indomethacin nonselectively inhibits COX-1 and COX-2, whereas NS-398 is a selective inhibitor of COX-2. In the present study we compared the activity of a selective (NS-398) and nonselective (indomethacin) COX-2 inhibitor on intrinsic tone of isolated guinea pig trachea. NS-398 ≥ indomethacin produced a reversal of intrinsic tone with a similar concentration-dependent (10 nM to 1 μM) time course (Tmax approximately 20–45 min), potency (EC50 1.7 and 5.6 nM, respectively), and maximal response. Contractions to cholinergic nerve stimulation (45 V, 0.5 ms, 0.1–32 Hz) and histamine were similarly modulated in tissues relaxed with the selective or nonselective COX-2 inhibitors. Immunoblot analyses showed that COX-2 protein synthesis was induced in both the cartilage and smooth muscle portions of the trachea during changes in intrinsic tone. These findings are consistent with pharmacological results and provide the first demonstration that prostanoid tone in isolated guinea pig trachea is dependent on COX-2 activity. The results also suggest that the activity of indomethacin in this preparation is likely related to COX-2 inhibition.Key words: cyclooxygenase 2, relaxation, guinea pig trachea, cyclooxygenase 1.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2850 ◽  
Author(s):  
Michelle Cortes-Salva ◽  
Stal Shrestha ◽  
Prachi Singh ◽  
Cheryl Morse ◽  
Kimberly Jenko ◽  
...  

Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positron-emitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.


1999 ◽  
Vol 276 (3) ◽  
pp. R913-R921 ◽  
Author(s):  
Ronald I. Clyman ◽  
Pierre Hardy ◽  
Nahid Waleh ◽  
Yao Qi Chen ◽  
Françoise Mauray ◽  
...  

Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents but have adverse effects on the fetal ductus arteriosus. We hypothesized that COX-2 inhibitors may not affect the ductus if the predominant COX isoform is COX-1. To examine this hypothesis, we used ductus arteriosus obtained from late-gestation fetal lambs. In contrast to our hypothesis, fetal lamb ductus arteriosus expressed both COX-1- and COX-2-immunoreactive protein (by Western analysis). Although COX-1 was found in both endothelial and smooth muscle cells, COX-2 was found only in the endothelial cells lining the ductus lumen (by immunohistochemistry). The relative contribution of COX-1 and COX-2 to PGE2 synthesis was consistent with the immunohistochemical results: in the intact ductus, PGE2 formation was catalyzed by both COX-1 and COX-2 in equivalent proportions; in the endothelium-denuded ductus, COX-2 no longer played a significant role in PGE2 synthesis. NS-398, a selective inhibitor of COX-2, was 66% as effective as the selective COX-1 inhibitor valeryl salicylate and the nonselective COX inhibitor indomethacin in causing contraction of the ductus in vitro. At this time, caution should be used when recommending COX-2 inhibitors for use in pregnant women.


1998 ◽  
Vol 114 ◽  
pp. A82
Author(s):  
T. Brzozowski ◽  
P.C. Konturek ◽  
R. Pajdo ◽  
N. Nagraba ◽  
A. Szczeklik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document