Hydropedology and Surface/Subsurface Runoff Processes

Author(s):  
Henry Lin ◽  
Erin Brooks ◽  
Paul McDaniel ◽  
Jan Boll
Keyword(s):  
2021 ◽  
Author(s):  
Daniel Bergmeister ◽  
Klaus Klebinder ◽  
Bernhard Kohl ◽  
Ulrich Burger ◽  
Georg Orsi ◽  
...  

<p>Assessing the water balance including subsurface runoff in high Alpine catchments is still a major challenge due to environmental and meteorological complexity, and mostly data-lacking hydrology. The aim of this study is the determination of the water balance components and water budget with focus on approximation of interflow, subsurface runoff and groundwater interactions, depending on sediment and bedrock properties.</p><p>In this process we investigate a small, high data providing Alpine catchment in the Wipp Valley (Tyrol, AT) to evaluate the best modelling approach in order to apply it on catchments along the Austrian Brenner axis. Thus, a direct model comparison of the main study catchment, with its (moderate data providing) neighbouring valley is carried out. The main study catchment (Padaster Valley) covers 11.2 km<sup>2</sup> and is located east of Steinach am Brenner in the Wipp Valley. Due to its partially usage as a deposital site, respectively a landfill for the tunnel excavation material of the Brenner Base Tunnel, this valley represents a highly interesting site in a hydrological aspect. Thus, the Padaster Valley is highly monitored and hence predestined for hydrological investigations. Hydrological data such as discharge is measured high frequently on four gauges, meteorological data on two gauges. An additional study catchment (Navis Valley) covers 63 km<sup>2</sup> and is located northerly next the Padaster Valley. Seven gauges provide meteorological data, however, continuous discharge data is just measured at the valley mouth. Further meteorological data for both areas will be contributed by the ZAMG (Zentralanstalt für Meteorologie und Geodynamik), whose INCA model provide a high spatial resolution dataset of 1km. However, in order to gain a better overall understanding of subsurface runoff and hydrogeological processes, geological data will be considered and incorporated/integrated in the modelling process. This includes geological maps, - cross sections and geophysical analysis, which help to estimate the bedrock topography, and consequently the volume as well as deeper seated hydrogeological properties of the sediment cover. In this context, continuous data from 7 groundwater observation wells provide information regarding groundwater levels and hydraulic head. To increase the model accuracy regarding subsurface flow processes, subsurface-depending runoff types after Pirkl & Sausgruber (2015) are applied. Furthermore, several maps such as land use, surface runoff coefficient and soil map including grain size distribution of the layers have been compiled by in-situ fieldwork for this study. In order to model the water budget, subsurface runoff and overall hydrological slope properties, the distributed hydrological Model WaSIM (Richards version; Schulla, 1997) is applied. The model is based on a modular system which uses physically-based algorithms.</p><p>The present study is been carried out by the Austrian Research Centre for Forests (BFW) in collaboration with the Brenner Base Tunnel (BBT-SE).</p>


2011 ◽  
Vol 8 (3) ◽  
pp. 6291-6329 ◽  
Author(s):  
X. Xu ◽  
D. Yang ◽  
M. Sivapalan

Abstract. Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability (e.g., precipitation and temperature) on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected in fPAR) among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total runoff, surface and subsurface runoff) and on vegetation cover (including total, woody and non-woody vegetation cover). Based on the results of statistical analysis, we conclude that annual runoff (R), evapotranspiration (E) and runoff coefficient (R/P) all increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Annual evapotranspiration (E) is mainly controlled by water availability rather than energy availability for catchments in relatively dry climates in which non-woody vegetation is dominant. The ratio of subsurface runoff to total runoff (Rg/R) also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P) in the current year is the most important factor affecting the change in annual total runoff (R), surface runoff (Rs) and subsurface runoff (Rg). The significance of other controlling factors is in the order of the annual precipitation in the previous year (P−1 and P−2), which represent the net effect of soil moisture, and the annual mean temperature (T) in the current year. Change of P by +1 % causes a +3.35 % change of R, a +3.47 % change of Rs and a +2.89 % change of Rg, on average. Likewise a change of temperature of +1° causes a −0.05 % change of R, a −0.07 % change of Rs and a −0.10 % change of Rg, on average. Results of elasticity analysis on the maximum monthly vegetation cover indicate that incoming shortwave radiation during the growing season (Rsd,grow) is the most important factor affecting the change in vegetation cover. Change of Rsd,grow by +1 % produces a −1.08 % change of total vegetation cover (Ft) on average. The significance of other causative factors is in the order of the precipitation during growing season, mean temperature during growing season and precipitation during non-growing season. The growing season precipitation is more significant than the non-growing season precipitation to non-woody vegetation cover, but the both have equivalent effects to woody vegetation cover.


2021 ◽  
Vol 25 (3) ◽  
pp. 65-72
Author(s):  
A.S. Solomentseva ◽  

The critical abrasion situation manifests itself on the coastal part of the Kalachevsky district due to the increasing anthropogenic load. The most important element of the complex of measures to combat silting of reservoirs and coastal abrasion, as well as an effective measure to strengthen the banks is forest vegetation. The objectives of the research were to study the soil, forest and climatic conditions of the object under study, to develop an assortment of shrubs and features of the formation of protective forest stands, as well as criteria for selecting an adapted assortment of tree and shrub vegetation and methods of caring for the soil and plantings. During the research, the most promising types of shrubs for creating upper protective forest stands were identified: Ligustrum vilgare L., Berberis vulgaris L., Cotoneaster lucidus Schltdl., Amelanchier Medik., Ribes aureum Pursh., Rosa canina L. It was found that the useful role of forest stands is manifested in their ability to convert surface runoff into subsurface runoff, to clean surface stock water from fine-grained soil, to weaken the speed of movement and to extinguish the energy of waves, binding the soil with roots. Recommendations are given for the creation and placement of anti-abrasion plantings, depending on the steepness and height of the slope. It is stated that one of the main measures for the care of the aboveground part of the plantings is the pruning of the crown, carried out taking into account the biological characteristics of their growth and development, including the removal of dry and damaged branches, thinning of the crown, preservation of the previously given crown size, rejuvenation of the crown. It is recommended to place shrubs depending on the landscape, soil and climatic conditions and features of abrasive processes in areas of constant, periodic, episodic flooding and strong moderate and weak flooding of the coastline.


1988 ◽  
Vol 1 (2) ◽  
pp. 175-180 ◽  
Author(s):  
P. Michiels ◽  
D. Gabriels ◽  
E. De Stooper ◽  
R. Hartmann

Author(s):  
Andrius Litvinaitis ◽  
Lina Bagdžiūnaitė-Litvinaitienė ◽  
Laurynas Šaučiūnas

On preparing of the first management plans of River Basin Districts have been found that diffuse agricultural pol-lution is one of the most important causing factor and the most significant impact on the quality of water bodies. Diffuse agricultural pollution can be from 45% to 80% of nitrate nitrogen pollution load of water bodies. Pollution is transported by water surface and subsurface runoff through sediments from agricultural territories. This article aims at evaluating of relation between the Quaternary sediments and Land use dissemination. The lithological factor (sandy, loamy, argillaceous) of the basin was calculated based on Quaternary map of Lithuania M 1:200000 and Lithuanian river map M 1:50000. The land-use factor of the basin was calculated based on Corine Land cover M 1:100000 using ArcGis software. In order to carry out more thorough analysis of the determination of relation between the Quaternary sediments and Land use dissemination in given territories, sections of 0–50 m, 50–200 m, 200–500 m, 500–800 m, 800–1000 m and >1000 m were established, calculating the distance in meters from the riverbank.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 296 ◽  
Author(s):  
Shuang Song ◽  
Wen Wang

An experimental soil tank (12 m long × 1.5 m wide × 1.5m deep) equipped with a spatially distributed instrument network was designed to conduct the artificial rainfall–runoff experiments. Soil moisture (SM), precipitation, surface runoff (SR) and subsurface runoff (SSR) were continuously monitored. A total of 32 rainfall–runoff events were analyzed to investigate the non-linear patterns of rainfall–runoff response and estimate the impact of antecedent soil moisture (ASM) on runoff formation. Results suggested that ASM had a significant impact on runoff at this plot scale, and a moisture threshold-like value which was close to field capacity existed in the relationship between soil water content and event-based runoff coefficient (φe), SSR and SSR/SR. A non-linear relationship between antecedent soil moisture index (ASI) that represented the initial storage capacity of the soil tank and total runoff was also observed. Response times of SR and SM to rainfall showed a marked variability under different conditions. Under wet conditions, SM at 10 cm started to increase prior to SR on average, whereas it responds slower than SR under dry conditions due to the effect of water repellency. The predominant contributor to SR generation for all events is the Hortonian overland flow (HOF). There is a hysteretic behavior between subsurface runoff flow and soil moisture with a switch in the hysteretic loop direction based on the wetness conditions prior to the event.


2016 ◽  
Vol 64 (3) ◽  
pp. 237-245 ◽  
Author(s):  
Feng Qian ◽  
Dongbin Cheng ◽  
Wenfeng Ding ◽  
Jiesheng Huang ◽  
Jingjun Liu

Abstract Hydrological processes play important roles in soil erosion processes of the hillslopes. This study was conducted to investigate the hydrological processes and the associated erosional responses on the purple soil slope. Based on a comprehensive survey of the Wangjiaqiao watershed in the Three Gorges Reservoir, four typical slope gradients (5°, 10°, 15°and 20°) were applied to five rainfall intensities (0.6, 1.1, 1.61, 2.12 and 2.54 mm·min-1). The results showed that both surface and subsurface runoff varied greatly depending on the rainfall intensity and slope gradient. Surface runoff volume was 48.1 to 280.1 times of that for subsurface runoff. The critical slope gradient was about 10°. The sediment yield rate increased with increases in both rainfall intensity and slope gradient, while the effect of rainfall intensity on the sediment yield rate was greater than slope gradient. There was a good linear relationship between sediment yield rate and Reynolds numbers, flow velocity and stream power, while Froude numbers, Darcy-Weisbach and Manning friction coefficients were not good hydraulic indicators of the sediment yield rate of purple soil erosion. Among the three good indicators (Re, v and w), stream power was the best predictor of sediment yield rate (R2 = 0.884). Finally, based on the power regression relationship between sediment yield rate, runoff rate, slope gradient and rainfall intensity, an erosion model was proposed to predict the purple soil erosion (R2 = 0.897). The results can help us to understand the relationship between flow hydraulics and sediment generation of slope erosion and offer useful data for the building of erosion model in purple soil.


2020 ◽  
Author(s):  
Martin Bartiška ◽  
Jan Frouz

<p>Subsurface processes are often omitted in catchment studies here we presented artificial catchment as a new tool to study and budget these processes on catchment level.</p><p>Falcon is and artificial  catchment that build in Sokolov post mining sites Catchment consist from four separate micro catchments (pools) each ) 0.25ha in area and 2m in depth which are hydrologically isolated  and filled by post mining overburden. Two fields were levelled while in two was wave like surface was produced to mimic situation after heaping.  Leveled micro catchments were planted by alder (Alnus glutinosa).</p><p>Catchment allow to study meteorological variables, surface and subsurface runoff,  and other key ecosystem parameters (water table depth chemical composition of pore water, soil respiration, gas exchange between ecosystem and surrounding atmosphere using eddy tower etc.). First result show large erosion on waves then on levelled sites however large proportion of material eroded from flat site leave the site while in wave like surface most of it is trapped in depression between waves. Subsurface runoff form large proportion of total runoff in wavy sites than in flat sites. Stable water table established quickly in both types of catchments} few months after catchment establishment. Flat sites show higher initial diversity of plants.</p>


Sign in / Sign up

Export Citation Format

Share Document