Water budget and subsurface runoff determination for small Alpine catchments using WaSIM

Author(s):  
Daniel Bergmeister ◽  
Klaus Klebinder ◽  
Bernhard Kohl ◽  
Ulrich Burger ◽  
Georg Orsi ◽  
...  

<p>Assessing the water balance including subsurface runoff in high Alpine catchments is still a major challenge due to environmental and meteorological complexity, and mostly data-lacking hydrology. The aim of this study is the determination of the water balance components and water budget with focus on approximation of interflow, subsurface runoff and groundwater interactions, depending on sediment and bedrock properties.</p><p>In this process we investigate a small, high data providing Alpine catchment in the Wipp Valley (Tyrol, AT) to evaluate the best modelling approach in order to apply it on catchments along the Austrian Brenner axis. Thus, a direct model comparison of the main study catchment, with its (moderate data providing) neighbouring valley is carried out. The main study catchment (Padaster Valley) covers 11.2 km<sup>2</sup> and is located east of Steinach am Brenner in the Wipp Valley. Due to its partially usage as a deposital site, respectively a landfill for the tunnel excavation material of the Brenner Base Tunnel, this valley represents a highly interesting site in a hydrological aspect. Thus, the Padaster Valley is highly monitored and hence predestined for hydrological investigations. Hydrological data such as discharge is measured high frequently on four gauges, meteorological data on two gauges. An additional study catchment (Navis Valley) covers 63 km<sup>2</sup> and is located northerly next the Padaster Valley. Seven gauges provide meteorological data, however, continuous discharge data is just measured at the valley mouth. Further meteorological data for both areas will be contributed by the ZAMG (Zentralanstalt für Meteorologie und Geodynamik), whose INCA model provide a high spatial resolution dataset of 1km. However, in order to gain a better overall understanding of subsurface runoff and hydrogeological processes, geological data will be considered and incorporated/integrated in the modelling process. This includes geological maps, - cross sections and geophysical analysis, which help to estimate the bedrock topography, and consequently the volume as well as deeper seated hydrogeological properties of the sediment cover. In this context, continuous data from 7 groundwater observation wells provide information regarding groundwater levels and hydraulic head. To increase the model accuracy regarding subsurface flow processes, subsurface-depending runoff types after Pirkl & Sausgruber (2015) are applied. Furthermore, several maps such as land use, surface runoff coefficient and soil map including grain size distribution of the layers have been compiled by in-situ fieldwork for this study. In order to model the water budget, subsurface runoff and overall hydrological slope properties, the distributed hydrological Model WaSIM (Richards version; Schulla, 1997) is applied. The model is based on a modular system which uses physically-based algorithms.</p><p>The present study is been carried out by the Austrian Research Centre for Forests (BFW) in collaboration with the Brenner Base Tunnel (BBT-SE).</p>

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Oscar Molina ◽  
Thi Thanh Luong ◽  
Christian Bernhofer

There is a lack of information about the effect of climate change on the water budget for the eastern side of Colombia, which is currently experiencing an increased pressure on its water resources due to the demand for food, industrial use, and human demand for drinking and hygiene. In this study, the lumped model BROOK90 was utilized with input based on the available historical and projected meteorological data, as well as land use and soil information. With this data, we were able to determine the changes in the water balance components in four different regions, representing four different water districts in Eastern Colombia. These four regions reflect four different sets of climate and geographic conditions. The projected data were obtained using the Statistical Downscaling Model (SDSM), in which two global climate models were used in addition to two different climate scenarios from each. These are the Representative Concentration Pathways (RCP) RCP 2.6 and RCP 8.5. Results showed that the temporal and spatial distribution of water balance components were considerably affected by the changing climate. A reduction in the generated streamflow for all of the studied regions is shown and changes in the evapotranspiration and stored water were varied for each region according to both the climate scenario as well as the characteristics of soil and land use for each area. The results of spatial change of the water balance components showed a direct link to the geography of each region. Soil moisture was reduced considerably in the next decades, and the percentage of decrease varied for each scenario.


2021 ◽  
Author(s):  
Fabian Lehner ◽  
Imran Nadeem ◽  
Herbert Formayer

Abstract. Daily meteorological data such as temperature or precipitation from climate models is needed for many climate impact studies, e.g. in hydrology or agriculture but direct model output can contain large systematic errors. Thus, statistical bias adjustment is applied to correct climate model outputs. Here we review existing statistical bias adjustment methods and their shortcomings, and present a method which we call EQA (Empirical Quantile Adjustment), a development of the methods EDCDFm and PresRAT. We then test it in comparison to two existing methods using real and artificially created daily temperature and precipitation data for Austria. We compare the performance of the three methods in terms of the following demands: (1): The model data should match the climatological means of the observational data in the historical period. (2): The long-term climatological trends of means (climate change signal), either defined as difference or as ratio, should not be altered during bias adjustment, and (3): Even models with too few wet days (precipitation above 0.1 mm) should be corrected accurately, so that the wet day frequency is conserved. EQA fulfills (1) almost exactly and (2) at least for temperature. For precipitation, an additional correction included in EQA assures that the climate change signal is conserved, and for (3), we apply another additional algorithm to add precipitation days.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2011 ◽  
Vol 8 (3) ◽  
pp. 6291-6329 ◽  
Author(s):  
X. Xu ◽  
D. Yang ◽  
M. Sivapalan

Abstract. Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability (e.g., precipitation and temperature) on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected in fPAR) among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total runoff, surface and subsurface runoff) and on vegetation cover (including total, woody and non-woody vegetation cover). Based on the results of statistical analysis, we conclude that annual runoff (R), evapotranspiration (E) and runoff coefficient (R/P) all increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Annual evapotranspiration (E) is mainly controlled by water availability rather than energy availability for catchments in relatively dry climates in which non-woody vegetation is dominant. The ratio of subsurface runoff to total runoff (Rg/R) also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P) in the current year is the most important factor affecting the change in annual total runoff (R), surface runoff (Rs) and subsurface runoff (Rg). The significance of other controlling factors is in the order of the annual precipitation in the previous year (P−1 and P−2), which represent the net effect of soil moisture, and the annual mean temperature (T) in the current year. Change of P by +1 % causes a +3.35 % change of R, a +3.47 % change of Rs and a +2.89 % change of Rg, on average. Likewise a change of temperature of +1° causes a −0.05 % change of R, a −0.07 % change of Rs and a −0.10 % change of Rg, on average. Results of elasticity analysis on the maximum monthly vegetation cover indicate that incoming shortwave radiation during the growing season (Rsd,grow) is the most important factor affecting the change in vegetation cover. Change of Rsd,grow by +1 % produces a −1.08 % change of total vegetation cover (Ft) on average. The significance of other causative factors is in the order of the precipitation during growing season, mean temperature during growing season and precipitation during non-growing season. The growing season precipitation is more significant than the non-growing season precipitation to non-woody vegetation cover, but the both have equivalent effects to woody vegetation cover.


2001 ◽  
Vol 106 (2) ◽  
pp. 153-168 ◽  
Author(s):  
Kell B Wilson ◽  
Paul J Hanson ◽  
Patrick J Mulholland ◽  
Dennis D Baldocchi ◽  
Stan D Wullschleger

2007 ◽  
Vol 46 ◽  
pp. 303-308 ◽  
Author(s):  
Gernot R. Koboltschnig ◽  
Wolfgang Schöner ◽  
Massimiliano Zappa ◽  
Hubert Holzmann

AbstractThis paper presents a comparative study at a small and highly glacierized catchment area in the Austrian Alps, where runoff under the extreme hot and dry conditions of summer 2003 was simulated based on two different glacier extents: the 2003 glacier extent and the 29% larger 1979 extent. Runoff was simulated applying the hydrological water balance model PREVAH at a high temporal resolution. For this purpose, the catchment area was subdivided into hydrological response units based on digital elevation model and land-cover data. The model was driven by meteorological data from the observatory at Hoher Sonnblick, situated at the highest point of the catchment area (3106ma.s.l.). We were interested in the effect the change in glacier extent would have on the annual and monthly water balance and the hydrograph of hourly discharges. Results of the 2003 and the hypothetical 1979 simulation show main differences in runoff for the period July–August depending on a higher ice-melt contribution. Due to the same meteorological input, both simulations calculate the same snow accumulation and snowmelt. Annual discharge in 1979 would have been 12% higher and hourly runoff up to 35% higher than in 2003.


2020 ◽  
Vol 2 (1) ◽  
pp. 84-89
Author(s):  
Hussein Ilaibi Zamil Al-Sudani ◽  

The hydrology section is divided into two main components, surface and groundwater. One of the most important outcomes in the water balance equation for any natural area or water body is Evapotranspiration and it is also a crucial component of the hydrologic cycle. Prediction of monthly evapotranspiration can be obtained depending on observed monthly average temperatures at a meteorological station in each year. Calculating of water balance in Iraq depending on meteorological data and Thornthwaite method was the aim of this research. Results of corrected potential evapotranspiration (PEc) obtained from applying Thornthwaite formula were compared with annual and monthly rainfall in thirty two meteorological station in order to estimate actual evapotranspiration (AE). The results showed that the annual summation of rainfall increased from south west towards north east according to the increasing ratio of rainfall due to the impact of Mediterranean climate condition on Iraq. Actual evapotranspiration depends directly on water excess during calculating water balance. Water surplus contour map indicates increased values towards north-east direction of Iraq, where water surplus depends directly on both rainfall and actual evapotranspiration.


Author(s):  
Dardan Klimenta ◽  
Julijana Lekic ◽  
Sanela Arsic ◽  
Dragan Tasic ◽  
Nikola Krstic ◽  
...  

It is known that meteorological variables from meteorological online services can be used for the design of photovoltaic (PV) water pumping systems for irrigation. The software LORENTZ COMPASS in such a manner uses as inputs solar irradiation, precipitation, and ambient temperature collected by the NASA Langley Research Centre over a period of more than 20 years. This paper proposes a novel procedure that uses the sunshine duration, precipitation, and ambient temperature as inputs. These inputs were collected by Weather Online UK during a period of 25 years. The effects of different data collection periods and data availabilities on the design of the PV water pumping system are also analysed and discussed. Along with the meteorological data, the proposed procedure uses as inputs datasheets from manufacturers of pumping systems and PV modules. The procedure is based on the Sivkov model that correlates the global horizontal irradiation with the sunshine duration and the elevation angle of the Sun. A case study, i.e., an existing PV water pumping system designed using LORENTZ COMPASS is used as reference for purposes of comparison and validation of the procedure. The results of the comparison showed a high level of accuracy, and a number of interesting conclusions are drawn from them.


2022 ◽  
Vol 26 (1) ◽  
pp. 35-54
Author(s):  
Fanny Lehmann ◽  
Bramha Dutt Vishwakarma ◽  
Jonathan Bamber

Abstract. The water budget equation describes the exchange of water between the land, ocean, and atmosphere. Being able to adequately close the water budget gives confidence in our ability to model and/or observe the spatio-temporal variations in the water cycle and its components. Due to advances in observation techniques, satellite sensors, and modelling, a number of data products are available that represent the components of water budget in both space and time. Despite these advances, closure of the water budget at the global scale has been elusive. In this study, we attempt to close the global water budget using precipitation, evapotranspiration, and runoff data at the catchment scale. The large number of recent state-of-the-art datasets provides a new evaluation of well-used datasets. These estimates are compared to terrestrial water storage (TWS) changes as measured by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. We investigated 189 river basins covering more than 90 % of the continental land area. TWS changes derived from the water balance equation were compared against GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the cyclostationary NSE. These metrics were used to assess the performance of more than 1600 combinations of the various datasets considered. We found a positive NSE and cyclostationary NSE in 99 % and 62 % of the basins examined respectively. This means that TWS changes reconstructed from the water balance equation were more accurate than the long-term (NSE) and monthly (cyclostationary NSE) mean of GRACE time series in the corresponding basins. By analysing different combinations of the datasets that make up the water balance, we identified data products that performed well in certain regions based on, for example, climatic zone. We identified that some of the good results were obtained due to the cancellation of errors in poor estimates of water budget components. Therefore, we used coefficients of variation to determine the relative quality of a data product, which helped us to identify bad combinations giving us good results. In general, water budget components from ERA5-Land and the Catchment Land Surface Model (CLSM) performed better than other products for most climatic zones. Conversely, the latest version of CLSM, v2.2, performed poorly for evapotranspiration in snow-dominated catchments compared, for example, with its predecessor and other datasets available. Thus, the nature of the catchment dynamics and balance between components affects the optimum combination of datasets. For regional studies, the combination of datasets that provides the most realistic TWS for a basin will depend on its climatic conditions and factors that cannot be determined a priori. We believe that the results of this study provide a road map for studying the water budget at catchment scale.


2013 ◽  
Vol 17 (1) ◽  
pp. 295-314 ◽  
Author(s):  
L. Rodríguez ◽  
L. Vives ◽  
A. Gomez

Abstract. In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s−1 while the observed absolute minimum discharge was 382 m3 s−1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average, pumping represented 16.2% of inflows while aquifer storage experienced a small overall increment. The model water balance indicates that the current rate of groundwater withdrawals does not exceed the rate of recharge in a regional sense.


Sign in / Sign up

Export Citation Format

Share Document