scholarly journals Engineering Pathogen Resistance in Crop Plants

Author(s):  
Matthew A. Campbell ◽  
Heather A. Fitzgerald ◽  
Pamela C. Ronald
2010 ◽  
Vol 48 (1) ◽  
pp. 269-291 ◽  
Author(s):  
David B. Collinge ◽  
Hans J.L. Jørgensen ◽  
Ole S. Lund ◽  
Michael F. Lyngkjær

1999 ◽  
Vol 133 (3) ◽  
pp. 243-249 ◽  
Author(s):  
NIGEL G. HALFORD

The most important harvested organs of crop plants, such as seeds, tubers and fruits, are often described as assimilate sinks. They play little or no part in the fixation of carbon through the production of sugars through photosynthesis, or in the uptake of nitrogen and sulphur, but import these assimilated resources to support metabolism and to store them in the form of starch, oils and proteins. Wild plants store resources in seeds and tubers to later support an emergent young plant. Cultivated crops are effectively storing resources to provide us with food and many have been bred to accumulate much more than would be required otherwise. For example, approximately 80% of a cultivated potato plant's dry weight is contained in its tubers, ten times the proportion in the tubers of its wild relatives (Inoue & Tanaka 1978). Cultivation and breeding has brought about a shift in the partitioning of carbon and nitrogen assimilate between the organs of the plant.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
J Van Staden ◽  
MG Kulkarni ◽  
GD Ascough ◽  
ME Light
Keyword(s):  

Author(s):  
J. P. F. D'Mello ◽  
Carol M. Duffus ◽  
John H. Duffus
Keyword(s):  

2019 ◽  
Vol 52 (2) ◽  
Author(s):  
Shahnaz Dawar ◽  
Asma Hanif ◽  
Rukkiya Siddique
Keyword(s):  
Root Rot ◽  

2018 ◽  
Author(s):  
Rudolf Fullybright

Accurate quantification of biological resistance has been impossible so far. Among the various forms of biological resistance which exist in nature, pathogen resistance to drugs is a familiar one. However, as in the case of other forms of resistance, accurately quantifying drug resistance in pathogens has been impossible up to now. Here, we introduce a mathematically-defined and uniform procedure for the absolute quantification of biological resistance deployed by any living organism in the biological realm, including and beyond drug resistance in medicine. The scheme introduced makes possible the exact measurement or computation of the extent to which resistance is deployed by any living organism regardless of kingdom and regardless of the mechanism of resistance involved. Furthermore, the Second Law of Resistance indicating that resistance has the potential to increase to infinite levels, and the Third Law of Resistance indicating that resistance comes to an end once interaction stops, the resistance unit function introduced here is fully compatible with both the Second and Third Laws of Resistance.


Sign in / Sign up

Export Citation Format

Share Document