Faculty Opinions recommendation of Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality.

Author(s):  
Antoni Rafalski
2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Ayushi Kamthan ◽  
Mohan Kamthan ◽  
Mohammad Azam ◽  
Niranjan Chakraborty ◽  
Subhra Chakraborty ◽  
...  

Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Kibrom B. Abreha ◽  
Muluken Enyew ◽  
Anders S. Carlsson ◽  
Ramesh R. Vetukuri ◽  
Tileye Feyissa ◽  
...  

Abstract Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Abstract Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.


2018 ◽  
Vol 17 (48) ◽  
pp. 1358-1367
Author(s):  
Ben Naceur Amani ◽  
Mnasri Sameh ◽  
Cheikh-M’hamed Hatem ◽  
Abdelly Chedly ◽  
Ben Naceur M’barek

2018 ◽  
Vol 24 (2) ◽  
Author(s):  
PIYUSH MISHRA ◽  
DEVENDRA KUMAR BHATT

Pasta was prepared by incorporation of Ocimum sanctum (Basil) for better textural and sensory properties. The pasta was incorporated with the leaf extract of Ocimum sanctum at different concentrations of control, 5, 10, and 15.The natural antioxidants present in the O. sanctum leaf powder that was incorporated in the fruit leather showed extended shelf-life over three months when compared with control, without any added preservative at ambient temperature. Also the nutritional stability of the product was studied under two flexible packages of polypropylene and polyester out of that the products packed in polypropylene showed better storage stability .


Author(s):  
D.W.R. White

Cell culture and genetic engineering techniques can be used to develop improved pasture plants. To utilise these methods we have developed procedures for regenerating plants from tissue cultures of perennial ryegrass and white clover. In both, the plant genotype influences regeneration capacity. There was significant genetic variation among regenerated perennial ryegrass plants in a wide range of characteristics. Most of the regenerants were resIstant to crown rust and this trait was highly heritable. This rust resistance is being used to breed a new ryegrass cultivar. A system for introducing cloned genes into white clover is described. This capability is bemg used to incorporate genes with the potential to improve nutritional quality and pest resistance. Other possibilities for engineering genetic improvements in white clover, genes conferring herbicide tolerance and resistance to white clover mosaic virus, are briefly outlined. Keywords: Lolium perenne, Trifolium repens, cell culture, somaclonal variation, crown rust resistance, transformation, cloned genes, nutritional quality, proteinase inhibitors, Bt toxins, pest resistance, WCMV viral cross-protection, herbicide tolerance, Agrobacterium, Bacillus thuringenisis.


Sign in / Sign up

Export Citation Format

Share Document