Faculty Opinions recommendation of The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach.

Author(s):  
Motoaki Seki
2020 ◽  
Vol 21 (21) ◽  
pp. 8258 ◽  
Author(s):  
Vishvanathan Marthandan ◽  
Rathnavel Geetha ◽  
Karunanandham Kumutha ◽  
Vellaichamy Gandhimeyyan Renganathan ◽  
Adhimoolam Karthikeyan ◽  
...  

Drought is a serious threat to the farming community, biasing the crop productivity in arid and semi-arid regions of the world. Drought adversely affects seed germination, plant growth, and development via non-normal physiological processes. Plants generally acclimatize to drought stress through various tolerance mechanisms, but the changes in global climate and modern agricultural systems have further worsened the crop productivity. In order to increase the production and productivity, several strategies such as the breeding of tolerant varieties and exogenous application of growth regulators, osmoprotectants, and plant mineral nutrients are followed to mitigate the effects of drought stress. Nevertheless, the complex nature of drought stress makes these strategies ineffective in benefiting the farming community. Seed priming is an alternative, low-cost, and feasible technique, which can improve drought stress tolerance through enhanced and advanced seed germination. Primed seeds can retain the memory of previous stress and enable protection against oxidative stress through earlier activation of the cellular defense mechanism, reduced imbibition time, upsurge of germination promoters, and osmotic regulation. However, a better understanding of the metabolic events during the priming treatment is needed to use this technology in a more efficient way. Interestingly, the review highlights the morphological, physiological, biochemical, and molecular responses of seed priming for enhancing the drought tolerance in crop plants. Furthermore, the challenges and opportunities associated with various priming methods are also addressed side-by-side to enable the use of this simple and cost-efficient technique in a more efficient manner.


2016 ◽  
Vol 18 (2) ◽  
pp. 71-78 ◽  
Author(s):  
KK Sarkar ◽  
MA Mannan ◽  
MM Haque ◽  
JU Ahmed

An experiment was conducted to study the effects of water stress on physiological parameters associated to drought tolerance in soybean at the Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during January to April, 2015. Four soybean genotypes namely i) BU Soybean 1 ii) Binasoybean 1 iii) Galarsum and iv) BARI Soybean 5 were grown in two watering regimes viz. control (80% of the field capacity) and water stress (50% of the field capacity). Genotypic variability was found in water stress tolerance in soybean. Highest accumulation of leaf proline, sugar and water content and lower accumulation of malondialdehyde were found in Binasoybean 1 compared to other genotypes. Lowest yield reduction was found in Binasoybean 1. Binasoybean 1 showed relatively higher drought tolerance whereas BARI Soybean 5 was found susceptible to yield. It was found that higher water stress tolerance in Binasoybean 1 was associated with better water relations and higher accumulation of sugar and proline and lower accumulation of malondialdehyde content in leaf.Bangladesh Agron. J. 2015, 18(2): 71-78


Silicon ◽  
2021 ◽  
Author(s):  
Krishan K. Verma ◽  
Xiu-Peng Song ◽  
Bo Lin ◽  
Dao-Jun Guo ◽  
Munna Singh ◽  
...  

2013 ◽  
Vol 16 (1) ◽  
pp. 34-42
Author(s):  
Sanh Du Nguyen

Torpedo grass (Panicum repens L.) is a C4 plant species, present on different soil types. The rhizome system and tubers of grass well developed, although flowering but not yet recorded the presence of seeds and seedlings (Yêu cầu tác giả viết lại toàn bộ câu này, không thể sửa được. Lưu ý câu phải có động từ chính). Tuber has high drought tolerance. Regenerative ability of the grass decreases with water content of the tuber. Tuber inability to regenerate shoots when it has water less than 30% of water at first. Repeatedly cut grass will take the tuber reserve depletion, not sufficient to provide for the regeneration bud sprouts. Coordinate disposal of mowing and using systemic herbicides will lead to better results. 6-8 weeks after cutting, the grass grow well with multiple shoots, spraying glyphosate 480 SL or glyphosate trimethyl sulphonium (GTS) at doses of 6-8 l / ha, mixed with urea at concentrations from 1% to 1.5%. This way helps prevent the emergence of shoots from rhizomes and tubers.


Author(s):  
Eduardo Blumwald ◽  
Rosa M. Rivero ◽  
Harkamal Wadia ◽  
Zvika Peleg ◽  
Mark Szczerba ◽  
...  

2008 ◽  
Vol 72 (8) ◽  
pp. 2251-2254 ◽  
Author(s):  
Yi-yue ZHANG ◽  
Yin LI ◽  
Ting GAO ◽  
Hui ZHU ◽  
Dong-jiang WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document