High‐Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White Blood Cells

2015 ◽  
Vol 72 (1) ◽  
Author(s):  
D. Robert Sutherland ◽  
Andrea Illingworth ◽  
Michael Keeney ◽  
Stephen J. Richards
1987 ◽  
Vol 65 (5) ◽  
pp. 444-451 ◽  
Author(s):  
R. Roy Baker ◽  
Zou Dao Loh

Red blood cells were isolated from rat blood and incubated in the presence of [3H]arachidonate. A sizeable quantity (18%) of the radioactivity was incorporated into red cell lipids, of which phosphatidylcholine was the most highly labelled. Radioactive arachidonate was found at position 2 of this phospholipid. Free fatty acids were removed by washing the cells in solutions containing fatty-acid-free bovine serum albumin. The labelled red cells were then incubated for up to 16 h at 37 °C. After 16 h of incubation in saline–buffer–glucose or rat serum, 20 and 26%, respectively, of the total radioactivity was found in free fatty acids, and there were corresponding declines in the percentage radioactivities found in phosphatidylcholine. In the presence of serum, there was a more rapid release of radioactive fatty acid over the 2- to 16-h time course. There was not a significant drop in the phosphate levels of the total red cell phospholipids or phosphatidylcholine after 16 h of incubation and, as a result, there were large declines in the specific radioactivities of phosphatidylcholine. Diacylglycerols were not highly labelled and the action of phospholipase A2 on labelled phosphatidylcholine was indicated. When white blood cells were added to labelled red cells, there was little evidence of white cell involvement in the release of radioactive fatty acid, suggesting that the red cells themselves may be involved in arachidonate release. Red cells may serve as sources of arachidonate, released following hemorrhage in brain and metabolized to form various biologically active eicosanoids.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


1978 ◽  
Vol 44 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Y. Kakiuchi ◽  
A. B. DuBois ◽  
D. Gorenberg

Hansen's membrane manometer method for measuring plasma colloid osmotic pressure was used to obtain the osmolality changes of dogs breathing different levels of CO2. Osmotic pressure was converted to osmolality by calibration of the manometer with saline and plasma, using freezing point depression osmometry. The addition of 10 vol% of CO2 to tonometered blood caused about a 2.0 mosmol/kg H2O increase of osmolality, or 1.2% increase of red blood cell volume. The swelling of the red blood cells was probably due to osmosis caused by Cl- exchanged for the HCO3- which was produced rapidly by carbonic anhydrase present in the red blood cells. The change in colloid osmotic pressure accompanying a change in co2 tension was measured on blood obtained from dogs breathing different CO2 mixtures. It was approximately 0.14 mosmol/kg H2O per Torr Pco2. The corresponding change in red cell volume could not be calculated from this because water can exchange between the plasma and tissues.


2006 ◽  
Vol 103 (52) ◽  
pp. 19630-19634 ◽  
Author(s):  
M. B. Pushkarsky ◽  
I. G. Dunayevskiy ◽  
M. Prasanna ◽  
A. G. Tsekoun ◽  
R. Go ◽  
...  

2015 ◽  
Vol 3 (25) ◽  
pp. 6565-6572 ◽  
Author(s):  
A. N. Edwards ◽  
M. Yamazaki ◽  
S. H. Krishnadasan ◽  
T. W. Phillips ◽  
L. Rowlands ◽  
...  

A simple method is presented for the preparation of photostable phosphorescent polymer nanospheres.


Sign in / Sign up

Export Citation Format

Share Document