Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) (Hypoxia Inducible Factor �� [HIF-1��])

Author(s):  
Oliver Hankinson
2009 ◽  
Vol 419 (2) ◽  
pp. 419-425 ◽  
Author(s):  
Martina Takacova ◽  
Tereza Holotnakova ◽  
Jan Vondracek ◽  
Miroslav Machala ◽  
Katerina Pencikova ◽  
...  

Tumour-associated expression of CA IX (carbonic anhydrase IX) is to a major extent regulated by HIF-1 (hypoxia-inducible factor-1) which is important for transcriptional activation and consists of the oxygen-regulated subunit HIF-1α and the partner factor ARNT [AhR (aryl hydrocarbon receptor) nuclear translocator]. We have previously observed that HIF-1α competes with the AhR for interaction with ARNT under conditions when both conditionally regulated factors are activated. We have therefore investigated whether TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced activation of the AhR pathway might interfere with CA IX expression. The results from the present study suggest that TCDD treatment reduces hypoxic induction of both CA IX mRNA and protein expression. Moreover, the transcriptional activity of the CA9 promoter was significantly reduced by expression of CAAhR (constitutively active AhR), which activates transcription in a ligand-independent manner. Finally, we found that ARNT is critical for both hypoxic induction and the TCDD-mediated inhibition of CA9 expression.


2016 ◽  
Vol 310 (2) ◽  
pp. C142-C150 ◽  
Author(s):  
Hirobumi Asai ◽  
Junya Hirata ◽  
Ayumi Hirano ◽  
Kazuya Hirai ◽  
Sayaka Seki ◽  
...  

Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with chronic kidney disease (CKD). In addition to the involvement in the progression of CKD, a recent report indicates that IS suppresses hypoxia-inducible factor (HIF)-dependent erythropoietin (EPO) production, suggesting that IS may also contribute to the progression of renal anemia. In this report, we provide evidence that aryl hydrocarbon receptor (AhR) mediates IS-induced suppression of HIF activation and subsequent EPO production. In HepG2 cells, IS at concentrations similar to the blood levels in CKD patients suppressed hypoxia- or cobalt chloride-induced EPO mRNA expression and transcriptional activation of HIF. IS also induced AhR activation, and AhR blockade resulted in abolishment of IS-induced suppression of HIF activation. The HIF transcription factor is a heterodimeric complex composed of HIF-α subunits (HIF-1α and HIF-2α) and AhR nuclear translocator (ARNT). IS suppressed nuclear accumulation of the HIF-α-ARNT complex accompanied by an increase of the AhR-ARNT complex in the nucleus, implying the involvement of interactions among AhR, HIF-α, and ARNT in the suppression mechanism. In rats, oral administration of indole, a metabolic precursor of IS, inhibited bleeding-induced elevation of renal EPO mRNA expression and plasma EPO concentration and strongly induced AhR activation in the liver and renal cortex tissues. Collectively, this study is the first to elucidate the detailed mechanism by which AhR plays an indispensable role in the suppression of HIF activation by IS. Hence, IS-induced activation of AhR may be a potential therapeutic target for treating renal anemia.


2009 ◽  
Vol 29 (13) ◽  
pp. 3465-3477 ◽  
Author(s):  
Sibel I. Karchner ◽  
Matthew J. Jenny ◽  
Ann M. Tarrant ◽  
Brad R. Evans ◽  
Hyo Jin Kang ◽  
...  

ABSTRACT The aryl hydrocarbon receptor (AHR) repressor (AHRR) inhibits AHR-mediated transcription and has been associated with reproductive dysfunction and tumorigenesis in humans. Previous studies have characterized the repressor function of AHRRs from mice and fish, but the human AHRR ortholog (AHRR715) appeared to be nonfunctional in vitro. Here, we report a novel human AHRR cDNA (AHRRΔ8) that lacks exon 8 of AHRR715. AHRRΔ8 was the predominant AHRR form expressed in human tissues and cell lines. AHRRΔ8 effectively repressed AHR-dependent transactivation, whereas AHRR715 was much less active. Similarly, AHRRΔ8, but not AHRR715, formed a complex with AHR nuclear translocator (ARNT). Repression of AHR by AHRRΔ8 was not relieved by overexpression of ARNT or AHR coactivators, suggesting that competition for these cofactors is not the mechanism of repression. AHRRΔ8 interacted weakly with AHR but did not inhibit its nuclear translocation. In a survey of transcription factor specificity, AHRRΔ8 did not repress the nuclear receptor pregnane X receptor or estrogen receptor α but did repress hypoxia-inducible factor (HIF)-dependent signaling. AHRRΔ8-Pro185 and -Ala185 variants, which have been linked to human reproductive disorders, both were capable of repressing AHR or HIF. Together, these results identify AHRRΔ8 as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.


Sign in / Sign up

Export Citation Format

Share Document