The Role of Early B-cell Factor in B-lymphocyte Development

2003 ◽  
pp. 313-324
Author(s):  
Mikael Sigvardsson
2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Hsiao Lin ◽  
Yue Liang ◽  
HanChen Wang ◽  
Lin Tze Tung ◽  
Michael Förster ◽  
...  

BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.


1994 ◽  
Vol 14 (5) ◽  
pp. 3292-3309
Author(s):  
M Lopez ◽  
P Oettgen ◽  
Y Akbarali ◽  
U Dendorfer ◽  
T A Libermann

The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 614-614
Author(s):  
Stefan Koehrer ◽  
Richard E. Davis ◽  
Greg Coffey ◽  
Ekaterina Kim ◽  
Nathalie Y. Rosin ◽  
...  

Abstract B lymphocyte development proceeds in a stepwise fashion and is tightly linked to the generation of a functional B cell receptor (BCR). At the preB cell stage B lymphocyte progenitors express the precursor B cell receptor (pre-BCR), an immature form of the BCR consisting of two µ heavy chains (µHC) and two surrogate light chains (SLC). Pre-BCR expression marks the proB to preB transition and induces a burst in preB lymphocyte proliferation. In 20% of the cases B cell acute lymphoblastic leukemia (B-ALL) arises from lymphocytes arrested at the pre-BCR positive stage of lymphocyte development (preB-ALL). Due to the essential role of the pre-BCR for preB cell proliferation we hypothesized that pre-BCR signaling also is involved in the maintenance of preB-ALL. Consequently, pharmacological inhibition of Spleen tyrosine kinase (Syk), the main transducer of pre-BCR signaling, may serve as effective treatment for this subtype of B-ALL. We analyzed a panel of six ALL cell lines (SMS-SB, RCH-ACV, Nalm-6, Kasumi-2, 697, KOPN-8) arrested at the pre-BCR+ stage of B lymphocyte development (cytoIgµ+, sIgM-). Assessment of the baseline phosphorylation levels of the pre-BCR associated kinases Lyn, Syk and Btk by immunoblotting and subsequent densitometric analysis allowed us to assign B-ALL cells into groups with either high levels of Lyn, Syk and Btk phosphorylation or with low or absent phosphorylation of these kinases, respectively. Moreover cell lines with highly phosphorylated Lyn, Syk and Btk also exhibited lower surface pre-BCR expression than cell lines with low phosphorylation levels. As pre-BCR activation is followed by its rapid internalization the concomitant presence of low pre-BCR expression and high phosphorylation of pre-BCR associated proteins suggests increased pre-BCR pathway activity. When we investigated the impact of pharmacological inhibition of the pre-BCR associated kinase Syk through the highly specific inhibitor PRT060318, preB-ALL cell lines with highly phosphorylated pre-BCR associated molecules turned out to be more sensitive to Syk inhibition (IC50 < 1.6µM) than preB-ALL cell lines with less phosphorylation (IC50 > 3.9µM). In proliferation assays PRT060318 inhibited preB-ALL proliferation in a dose dependent manner, whereas PRT060318 did not induce apoptosis in concentrations as high as 5µM. This supports the notion that pre-BCR signaling activity may be more relevant for preB-ALL proliferation than for preB-ALL viability. In line with these results the pre-BCR- proB-ALL cell lines REH and RS4;11 were highly resistant to Syk inhibition in all functional assays (IC50 > 10µM), suggesting that pre-BCR expression is a prerequisite for sensitivity to Syk inhibition. To examine the molecular changes following pre-BCR inhibition, ALL cells were treated with increasing concentrations of PRT060318 (100nM-5µM) for two hours and then subjected to immunoblotting. Syk inhibition led to a dose dependent decrease in AKT phosphorylation in all preB-ALL cell lines and subsequently reduced phosphorylation of FOXO transcription factors. In the resistant proB-ALL cell line REH, AKT and FOXO phosphorylation were not affected. Gene expression analysis of the preB-ALL cell lines RCH-ACV and Nalm-6 further suggested that PRT060318 interferes with pre-BCR signaling. Treatment with 1µM PRT060318 for 72h reduced the expression of genes associated with pre-BCR signaling (e.g. BCL6, CD22, PTPN6) and Ingenuity Pathway Analysis identified pre-BCR signaling as the main target of PRT060318 in both cell lines (p<0.05). We are currently validating the GEP analysis by quantitative PCR and immunoblotting. In conclusion, we provide evidence for the efficacy of Syk inhibition in pre-BCR+ ALL. Moreover we were able to correlate the baseline phosphorylation status of pre-BCR associated proteins and pre-BCR expression levels with the sensitivity of preB-ALL to the Syk inhibitor PRT060318. These findings provide a first rationale for the clinical testing of Syk inhibitors in preB-ALL, and suggest that activation status of pre-BCR associated molecules can help in selecting preB-ALL cases that are particularly sensitive to Syk inhibition. Disclosures: Coffey: Portola Pharmaceuticals: Employment.


1999 ◽  
Vol 11 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Annica Mårtensson ◽  
Yair Argon ◽  
Fritz Melchers ◽  
Jeanne L. Duland ◽  
Inga-Lill Mårtensson

Life Sciences ◽  
2007 ◽  
Vol 80 (24-25) ◽  
pp. 2334-2336 ◽  
Author(s):  
M.V. Skok ◽  
R. Grailhe ◽  
F. Agenes ◽  
J.-P. Changeux

1998 ◽  
Vol 187 (5) ◽  
pp. 703-709 ◽  
Author(s):  
Ulla-Carin Tornberg ◽  
Ingela Bergqvist ◽  
Matthias Haury ◽  
Dan Holmberg

The development of B lymphocytes from progenitor cells is dependent on the expression of a pre–B cell–specific receptor made up by a μ heavy chain associated with the surrogate light chains, immunoglobulin (Ig)α, and Igβ. A variant pre–B cell receptor can be formed in which the μ heavy chain is exchanged for a truncated μ chain denoted Dμ. To investigate the role of this receptor in the development of B cells, we have generated transgenic mice that express the Dμ protein in cells of the B lineage. Analysis of these mice reveal that Dμ expression leads to a partial block in B cell development at the early pre–B cell stage, probably by inhibiting VH to DHJH rearrangement. Furthermore, we provide evidence that Dμ induces VL to JL rearrangements.


Sign in / Sign up

Export Citation Format

Share Document