scholarly journals Regulation of B Lymphocyte Development by the Truncated Immunoglobulin Heavy Chain Protein Dμ

1998 ◽  
Vol 187 (5) ◽  
pp. 703-709 ◽  
Author(s):  
Ulla-Carin Tornberg ◽  
Ingela Bergqvist ◽  
Matthias Haury ◽  
Dan Holmberg

The development of B lymphocytes from progenitor cells is dependent on the expression of a pre–B cell–specific receptor made up by a μ heavy chain associated with the surrogate light chains, immunoglobulin (Ig)α, and Igβ. A variant pre–B cell receptor can be formed in which the μ heavy chain is exchanged for a truncated μ chain denoted Dμ. To investigate the role of this receptor in the development of B cells, we have generated transgenic mice that express the Dμ protein in cells of the B lineage. Analysis of these mice reveal that Dμ expression leads to a partial block in B cell development at the early pre–B cell stage, probably by inhibiting VH to DHJH rearrangement. Furthermore, we provide evidence that Dμ induces VL to JL rearrangements.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 614-614
Author(s):  
Stefan Koehrer ◽  
Richard E. Davis ◽  
Greg Coffey ◽  
Ekaterina Kim ◽  
Nathalie Y. Rosin ◽  
...  

Abstract B lymphocyte development proceeds in a stepwise fashion and is tightly linked to the generation of a functional B cell receptor (BCR). At the preB cell stage B lymphocyte progenitors express the precursor B cell receptor (pre-BCR), an immature form of the BCR consisting of two µ heavy chains (µHC) and two surrogate light chains (SLC). Pre-BCR expression marks the proB to preB transition and induces a burst in preB lymphocyte proliferation. In 20% of the cases B cell acute lymphoblastic leukemia (B-ALL) arises from lymphocytes arrested at the pre-BCR positive stage of lymphocyte development (preB-ALL). Due to the essential role of the pre-BCR for preB cell proliferation we hypothesized that pre-BCR signaling also is involved in the maintenance of preB-ALL. Consequently, pharmacological inhibition of Spleen tyrosine kinase (Syk), the main transducer of pre-BCR signaling, may serve as effective treatment for this subtype of B-ALL. We analyzed a panel of six ALL cell lines (SMS-SB, RCH-ACV, Nalm-6, Kasumi-2, 697, KOPN-8) arrested at the pre-BCR+ stage of B lymphocyte development (cytoIgµ+, sIgM-). Assessment of the baseline phosphorylation levels of the pre-BCR associated kinases Lyn, Syk and Btk by immunoblotting and subsequent densitometric analysis allowed us to assign B-ALL cells into groups with either high levels of Lyn, Syk and Btk phosphorylation or with low or absent phosphorylation of these kinases, respectively. Moreover cell lines with highly phosphorylated Lyn, Syk and Btk also exhibited lower surface pre-BCR expression than cell lines with low phosphorylation levels. As pre-BCR activation is followed by its rapid internalization the concomitant presence of low pre-BCR expression and high phosphorylation of pre-BCR associated proteins suggests increased pre-BCR pathway activity. When we investigated the impact of pharmacological inhibition of the pre-BCR associated kinase Syk through the highly specific inhibitor PRT060318, preB-ALL cell lines with highly phosphorylated pre-BCR associated molecules turned out to be more sensitive to Syk inhibition (IC50 < 1.6µM) than preB-ALL cell lines with less phosphorylation (IC50 > 3.9µM). In proliferation assays PRT060318 inhibited preB-ALL proliferation in a dose dependent manner, whereas PRT060318 did not induce apoptosis in concentrations as high as 5µM. This supports the notion that pre-BCR signaling activity may be more relevant for preB-ALL proliferation than for preB-ALL viability. In line with these results the pre-BCR- proB-ALL cell lines REH and RS4;11 were highly resistant to Syk inhibition in all functional assays (IC50 > 10µM), suggesting that pre-BCR expression is a prerequisite for sensitivity to Syk inhibition. To examine the molecular changes following pre-BCR inhibition, ALL cells were treated with increasing concentrations of PRT060318 (100nM-5µM) for two hours and then subjected to immunoblotting. Syk inhibition led to a dose dependent decrease in AKT phosphorylation in all preB-ALL cell lines and subsequently reduced phosphorylation of FOXO transcription factors. In the resistant proB-ALL cell line REH, AKT and FOXO phosphorylation were not affected. Gene expression analysis of the preB-ALL cell lines RCH-ACV and Nalm-6 further suggested that PRT060318 interferes with pre-BCR signaling. Treatment with 1µM PRT060318 for 72h reduced the expression of genes associated with pre-BCR signaling (e.g. BCL6, CD22, PTPN6) and Ingenuity Pathway Analysis identified pre-BCR signaling as the main target of PRT060318 in both cell lines (p<0.05). We are currently validating the GEP analysis by quantitative PCR and immunoblotting. In conclusion, we provide evidence for the efficacy of Syk inhibition in pre-BCR+ ALL. Moreover we were able to correlate the baseline phosphorylation status of pre-BCR associated proteins and pre-BCR expression levels with the sensitivity of preB-ALL to the Syk inhibitor PRT060318. These findings provide a first rationale for the clinical testing of Syk inhibitors in preB-ALL, and suggest that activation status of pre-BCR associated molecules can help in selecting preB-ALL cases that are particularly sensitive to Syk inhibition. Disclosures: Coffey: Portola Pharmaceuticals: Employment.


1995 ◽  
Vol 181 (1) ◽  
pp. 161-168 ◽  
Author(s):  
S A Grupp ◽  
R N Mitchell ◽  
K L Schreiber ◽  
D J McKean ◽  
A K Abbas

The B cell receptor for antigen (BCR) is a complex of membrane immunoglobulin (mIg) and at least two other proteins, Ig alpha (mb-1) and Ig beta (B29). This complex promotes surface expression of the BCR and acts to transduce an activation signal. We have used a system of mu heavy chain constructs transfected into murine B cell lines to probe structure-function relationships in the BCR complex. One mutant mu chain, in which two polar transmembrane residues (Tyr587, Ser588) are replaced with valine, fails to associate with Ig alpha and Ig beta and is incapable of transducing signals as a result of mIg cross-linking. This mutant is expressed on the surface at high levels when transfected into a plasmacytoma line that lacks Ig alpha, whereas wild-type mu is retained in this cell line in the endoplasmic reticulum. Pulse-chase and immunoprecipitation analyses indicate that the mutant is more rapidly released from calnexin than the wild-type mu. Further, transfection of Ig alpha into this Ig alpha-negative cell line allows release of the mu chain from calnexin and surface expression of the BCR. These results identify the transmembrane residues of mu heavy chain that control binding to calnexin and Ig alpha, and suggest that calnexin-dependent intracellular retention is an important control mechanism for expression of the BCR complex.


1999 ◽  
Vol 19 (1) ◽  
pp. 671-679 ◽  
Author(s):  
Pierangela Sabbattini ◽  
Andrew Georgiou ◽  
Calum Sinclair ◽  
Niall Dillon

ABSTRACT The murine λ5-V preB1 locus encodes two proteins that form part of the pre-B-cell receptor and play a key role in B-lymphocyte development. We have identified a locus control region (LCR) which is responsible for coordinate activation of both genes in pre-B cells. Analysis of mice with single and multiple copies of transgenes shows a clear difference in the expression behavior of the genes depending on the transgene copy number. While expression of both λ5 and V preB1 in single- and two-copy integrations requires the presence of a set of DNase I hypersensitive sites located 3′ of the λ5 gene, small fragments containing the genes have LCR activity when arranged in multiple-copy tandem arrays, indicating that additional components of the LCR are located within or close to the genes. The complete LCR is capable of driving efficient copy-dependent expression of a λ5 gene in pre-B cells even when it is integrated into centomeric γ-satellite DNA. The finding that activation of expression of the locus by positively acting factors is fully dominant over the silencing effect of heterochromatin has implications for models for chromatin-mediated gene silencing during B-cell development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Hsiao Lin ◽  
Yue Liang ◽  
HanChen Wang ◽  
Lin Tze Tung ◽  
Michael Förster ◽  
...  

BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal Hydrolase (UCH) family that regulates gene expression and other cellular processes, via deubiquitination of histone H2AK119ub and other substrates. BAP1 is an important tumor suppressor in human, expressed and functional across many cell-types and tissues, including those of the immune system. B lymphocytes are the mediators of humoral immune response, however the role of BAP1 in B cell development and physiology remains poorly understood. Here we characterize a mouse line with a selective deletion of BAP1 within the B cell lineage (Bap1fl/fl mb1-Cre) and establish a cell intrinsic role of BAP1 in the regulation of B cell development. We demonstrate a depletion of large pre-B cells, transitional B cells, and mature B cells in Bap1fl/fl mb1-Cre mice. We characterize broad transcriptional changes in BAP1-deficient pre-B cells, map BAP1 binding across the genome, and analyze the effects of BAP1-loss on histone H2AK119ub levels and distribution. Overall, our work establishes a cell intrinsic role of BAP1 in B lymphocyte development, and suggests its contribution to the regulation of the transcriptional programs of cell cycle progression, via the deubiquitination of histone H2AK119ub.


Hematology ◽  
2005 ◽  
Vol 2005 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Guillaume Dighiero

Abstract Chronic lymphocytic leukemia (CLL) follows an extremely variable course with survival ranging from months to decades. Recently, there has been major progress in the identification of molecular and cellular markers that may predict the tendency for disease progression in CLL patients. In particular, the mutational profile of Ig genes and some cytogenetic abnormalities have been found to be important predictors of prognosis in CLL. However, this progress has raised new questions about the biology and prognosis of the disease, some of which are addressed here. Such questions include: 1) What is the role of the B-cell receptor (BCR) in CLL pathogenesis? 2) Is CLL one disease? 3) Is CLL an accumulative disease? 4) What is the normal counterpart of the CLL B lymphocyte? 5) Have the Rai and Binet staging systems become obsolete? 6) Which is the best surrogate for Ig mutational profiles?


1999 ◽  
Vol 11 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Annica Mårtensson ◽  
Yair Argon ◽  
Fritz Melchers ◽  
Jeanne L. Duland ◽  
Inga-Lill Mårtensson

2004 ◽  
Vol 32 (2) ◽  
pp. 320-325 ◽  
Author(s):  
S. Koyasu

PI3K (phosphoinositide 3-kinase) family members control a variety of cellular responses, such as cell growth, survival, cytoskeletal remodelling and the trafficking of intracellular organelles, in many cell types, including lymphocytes. It has been difficult to evaluate the roles of distinct PI3Ks in immune responses, because specific inhibitors for each PI3K are lacking and most stimuli activate multiple PI3Ks. The development of gene-targeted mice has now allowed the elucidation of roles played in vivo by PI3K species in the immune system. Studies on mice deficient in catalytic as well as regulatory subunits of class IA PI3Ks have shown the importance of this class of PI3K in B lineage cells. Here I discuss the role of class IA PI3Ks in B lymphocyte development and B cell antigen receptor-mediated signal transduction.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 523 ◽  
Author(s):  
Oriol de Barrios ◽  
Ainara Meler ◽  
Maribel Parra

The transcription factor MYC is transiently expressed during B lymphocyte development, and its correct modulation is essential in defined developmental transitions. Although temporary downregulation of MYC is essential at specific points, basal levels of expression are maintained, and its protein levels are not completely silenced until the B cell becomes fully differentiated into a plasma cell or a memory B cell. MYC has been described as a proto-oncogene that is closely involved in many cancers, including leukemia and lymphoma. Aberrant expression of MYC protein in these hematological malignancies results in an uncontrolled rate of proliferation and, thereby, a blockade of the differentiation process. MYC is not activated by mutations in the coding sequence, and, as reviewed here, its overexpression in leukemia and lymphoma is mainly caused by gene amplification, chromosomal translocations, and aberrant regulation of its transcription. This review provides a thorough overview of the role of MYC in the developmental steps of B cells, and of how it performs its essential function in an oncogenic context, highlighting the importance of appropriate MYC regulation circuitry.


1988 ◽  
Vol 168 (1) ◽  
pp. 229-245 ◽  
Author(s):  
J Bird ◽  
N Galili ◽  
M Link ◽  
D Stites ◽  
J Sklar

Southern blot analyses revealed that cells from nearly 30% of childhood B cell precursor acute lymphoblastic leukemias (ALLs) contained more than two rearranged, nongermline bands for Ig heavy chain genes. DNA corresponding to these bands was molecularly cloned from two cases which showed three and seven rearranged bands, respectively. Nucleotide sequence analysis of the cloned DNA demonstrated that each band represented different VDJ or DJ rearrangements. While the same DJ joints were shared by several rearrangements, different DJ joints were found in the majority of rearrangements, precluding V region substitution as an explanation for the multiplicity of heavy chain rearrangements in these leukemias. Most of the V region segments involved in these rearrangements were restricted to VH region families that have been shown previously to be preferentially rearranged in human fetal B lineage cells. Sequence analysis of multiple copies of the same VDJ rearrangements from different cells revealed no somatic mutation, a mechanism responsible for detection of extra rearranged Ig DNA bands in certain other B lineage tumors. The data suggest that in some cases of ALL Ig heavy chain genes begin and continue to rearrange de novo within the neoplastic B cell precursor populations derived from an original malignant cell transformed at a stem cell stage of differentiation.


Sign in / Sign up

Export Citation Format

Share Document