scholarly journals A DNA damage repair gene‐associated signature predicts responses of patients with advanced soft‐tissue sarcoma to treatment with trabectedin

2021 ◽  
Author(s):  
David S. Moura ◽  
Maria Peña‐Chilet ◽  
Juan Antonio Cordero Varela ◽  
Ramiro Alvarez‐Alegret ◽  
Carolina Agra‐Pujol ◽  
...  
2015 ◽  
Vol 7 ◽  
pp. e2015046 ◽  
Author(s):  
Sudhansu Sekhar Nishank

Background– Defect in DNA damage repair genes due to oxidative stress predispose the humans to malignancies. There are many cases of association of malignancies with sickle cell disease patients (SCD) throughout the world, the molecular cause of which has never been investigated. DNA damage repair genes such as  hOGG1, XRCC1 and p53 play significant role in repair of DNA damage during oxidative stress but the distribution and clinical effect of these genes are not known till date in SCD patients who are associated with oxidative stress related clinical complications.        Objective – The aim of the study was to characterize the distribution and clinical effect of DNA damage gene polymorphisms p53 (codon 72 Arg> Pro), hOGG1 (codon 326 Ser>Cyst) and XRCC1 (codons 194 Arg>Trp, codon 280 Arg> His, codon 399 Arg> Gln) among SCD patients of  central India. Methods- A case control study of  250 SCD patients and 250 normal individuals were investigated by PCR-RFLP techniques.     Result- The prevalence of mutant alleles of hOGG1 gene, XRCC1 codon 280 Arg>His  were found to be significantly high among SCD patients as compared to controls. However, SCD patients did not show clinical association with any of these DNA repair gene polymorphisms.  Conclusion- This indicates that hOGG1, p53  and XRCC1 gene polymorphisms  may not have any clinical impact among SCD patients in India.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Wang ◽  
Zhisheng Wu

Glioma is the most common type of malignant tumor in the central nervous system with an unfavorable prognosis and limited treatment. In this study, we are devoted to addressing the prognostic value of DNA damage repair-related genes in low-grade glioma (LGG). We plotted the landscape of DNA damage repair (DDR)-related genes and identified SMC4 as an independent prognostic marker with integrated bioinformatics analysis, which is overexpressed in different histologic subtypes of glioma. We observed that SMC4 expression is elevated in recurrent LGG patients or those with advanced histologic staging. SMC4 depletion inhibits proliferation and induces increased replication damage in LGG cells. Lastly, we predicted and validated the transcription modulation of SMC4 by a transcription factor, MYB, at the -976bp~ -837bp of the SMC4 promoter region in LGG cells. Together, our study identified SMC4 as a potential prognostic biomarker for LGG patients, which functions to promote cell proliferation by repairing replication damage and the expression of SMC4 could be transcriptionally regulated by MYB.


2013 ◽  
Vol 105 (16) ◽  
pp. 1249-1253 ◽  
Author(s):  
Christopher G. Smith ◽  
Hannah West ◽  
Rebecca Harris ◽  
Shelley Idziaszczyk ◽  
Timothy S. Maughan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document