scholarly journals Lateral variations in the long-term slip rate of the Chelungpu fault, Central Taiwan, from the analysis of deformed fluvial terraces

2014 ◽  
Vol 119 (4) ◽  
pp. 3740-3766 ◽  
Author(s):  
M. Simoes ◽  
Y.-G. Chen ◽  
D. P. Shinde ◽  
A. K. Singhvi
2020 ◽  
Author(s):  
Magali Rizza ◽  
Brice Lebrun ◽  
Lionel Siame ◽  
Valéry Guillou

<p>The determination of fault slip rate is often inferred from dating of Quaternary, deformed geomorphological surfaces affected by fault activity. For this reason, cosmogenic and luminescence methods now are widely applied to date the emplacement of geomorphic markers, but each method relates to different geomorphic processes. While the Terrestrial Cosmogenic Nuclides (TCN) method generally dates the exposure duration of the rock surface to cosmic rays, the Optically Stimulated Luminescence (OSL) method provides burial duration of the sediment after deposition. Age differences between these two methods may relate to the erosion-transport-deposition and aggradation processes experienced by the sediment prior its final deposition but combined may provide new insights into the processes affecting alluvial landforms.</p><p>Our case study is located in the Western Foothills, south of the Choushui River (Central Taiwan). There, slip on the Changhua blind thrust fault has caused the eastward tilt of a wide flight of fluvial terraces but slip rates on frontal faults are still debated due to large epistemic uncertainties in dating alluvial surfaces with OSL and TCN methods. To achieve a finer chronology of the deposits, a high-resolution sampling strategy has been deployed leading to a direct and unique comparison between OSL and TCN dating methods. Taking advantage of a natural exposure, we collected 10 samples for <sup>10</sup>Be dating completed by 5 OSL samples along a 7 m depth profile. The depth distribution of <sup>10</sup>Be concentrations show a complex depositional history with at least two depositional sequences, modelled to be older than ~38.7 ka.</p><p>As previous work has shown the difficulties of OSL dating in Taiwan, particular attention has been paid to luminescence characteristics of quartz and potential dosimetry issues. Our OSL analysis are in good agreement with <sup>10</sup>Be and previous <sup>14</sup>C dating and also reveal three depositional units, dated between ~9 ka and ~66 ka, that are evidenced by different OSL signal characteristics and variations in dosimetry.</p><p>This study shows that it is informative to have an exhaustive, detailed, and direct comparison between dating methods on a single depth profile to discuss the geomorphic processes and allow a more detailed understanding of the long-term rates of the Changhua Fault.</p>


2007 ◽  
Vol 18 (2) ◽  
pp. 223 ◽  
Author(s):  
Andrew Tien-Shun Lin ◽  
Shun-Min Wang ◽  
Jih-Hao Hung ◽  
Ming-Shyan Wu ◽  
Chih-Shae Liu

2011 ◽  
Vol 62 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Dario Gioia ◽  
Claudio Martino ◽  
Marcello Schiattarella

Long- to short-term denudation rates in the southern Apennines: geomorphological markers and chronological constraints Age constraints of geomorphological markers and consequent estimates of long- to short-term denudation rates from southern Italy are given here. Geomorphic analysis of the valley of the Tanagro River combined with apatite fission track data and radiometric dating provided useful information on the ages and evolution of some significant morphotectonic markers such as regional planated landscapes, erosional land surfaces and fluvial terraces. Reconstruction of paleotopography and estimation of the eroded volumes were perfomed starting from the plano-altimetric distribution of several orders of erosional land surfaces surveyed in the study area. Additional data about denudation rates related to the recent and/or active geomorphological system have been obtained by estimating the amount of suspended sediment yield at the outlet of some catchments using empirical relationships based on the hierarchical arrangement of the drainage network. Denudation rates obtained through these methods have been compared with the sedimentation rates calculated for two adjacent basins (the Pantano di San Gregorio and the Vallo di Diano), on the basis of published tephrochronological constraints. These rates have also been compared with those calculated for the historical sediment accumulation in a small catchment located to the north of the study area, with long-term exhumation data from thermochronometry, and with uplift rates from the study area. Long- and short-term denudation rates are included between 0.1 and 0.2 mm/yr, in good agreement with regional data and long-term sedimentation rates from the Vallo di Diano and the Pantano di San Gregorio Magno basins. On the other hand, higher values of exhumation rates from thermochronometry suggest the existence of past erosional processes faster than the recent and present-day exogenic dismantling. Finally, the comparison between uplift and denudation rates indicates that the fluvial erosion did not match the tectonic uplift during the Quaternary in this sector of the chain. The axial zone of the southern Apennines should therefore be regarded as a landscape in conditions of geomorphological disequilibrium.


2006 ◽  
Vol 20 (03) ◽  
pp. 261-276 ◽  
Author(s):  
RALF HETZEL ◽  
ANDREA HAMPEL

Seismic hazard evaluations on major faults in Earth's crust are based on their slip histories, which reflect the frequency of earthquakes that ruptured a fault in the past. On a 100 000-year timescale, the slip rate of a fault can be determined by dating geomorphic surfaces that are offset by a fault. Application of this method to alluvial fan surfaces and river terraces offset by thrust faults in Tibet yields long-term slip rates of less than 1mm/a. Slip rates on a 10 000-year timescale are derived from paleoseismologic data and document that faults experience considerable slip rate variations on timescales of 100 to 1000 years. In particular, slip rates are often considerable higher in the present interglacial, the Holocene, than during the last glacial period, the Late Pleistocene. The causes of this behavior have remained enigmatic but their assessment is essential for an accurate evaluation of a fault's past and future seismicity. Numerical experiments show that the retreat of lakes and glaciers at the end of the last glacial period can cause an increase in the Holocene slip rate of a fault. Such a correlation between enhanced seismicity and climate-driven mass fluctuations on Earth's surface is best documented for the Wasatch Fault, Utah.


2021 ◽  
Vol 3 ◽  
Author(s):  
Hsin-Fu Yeh

In recent years, Taiwan has been facing severe water shortages due to extreme drought. In addition, changes in rainfall patterns have resulted in an increasingly notable drought phenomenon, which affects the management and utilization of water resources. Therefore, this work examines basins in Central Taiwan. Long-term records from 13 rainfall and 17 groundwater stations were selected. The Standardized Precipitation Index (SPI) and Standardized Groundwater Level Index (SGI) were used to analyze the drought characteristics of this region. The rainfall and groundwater level data from basins in Central Taiwan were analyzed in this study. The results show that the year 2015 experienced extreme drought conditions due to a correlation with SPI and SGI signals. In addition, with regard to groundwater drought, more drought events occurred in the Da'an River basin; however, the duration and intensity of these events were relatively low, in contrast to those of the Wu River basin. Finally, the correlation between SPI and SGI was observed to vary in different basins, but a certain degree of correlation was observed in all basins. The results show that drought intensity increases with longer drought durations. Moreover, severe droughts caused by rainfall tend to occur at a greater frequency than those caused by groundwater.


Sign in / Sign up

Export Citation Format

Share Document