Observed warming trend in sea surface temperature at tropical cyclone genesis

2017 ◽  
Vol 44 (2) ◽  
pp. 1034-1040 ◽  
Author(s):  
Cécile L. Defforge ◽  
Timothy M. Merlis
2017 ◽  
Vol 30 (22) ◽  
pp. 9133-9145 ◽  
Author(s):  
Cécile L. Defforge ◽  
Timothy M. Merlis

Recent studies have reaffirmed a global threshold sea surface temperature (SST) of 26°C for tropical cyclone (TC) genesis. However, it is well understood that other thermodynamic variables influence TC genesis and that high SST in isolation is not a sufficient criterion for genesis. Here, a basin-by-basin analysis of the SST distributions in the five most active ocean basins is performed, which shows that there is no global SST threshold for TC genesis. The distributions of genesis SST show substantial variations between basins. Furthermore, analysis of the conditional probability of genesis for a given TC season main development region SST suggests that the SST bounds for TC genesis are largely determined by the climatological bounds of the basin and that the SST values within this environmental range have similar probabilities of genesis. The distribution of relative SST (the difference between local and tropical mean) and tropical cyclone potential intensity at TC genesis are more distinct from those of the TC season environment, consistent with their utility in TC genesis indices.


2021 ◽  
pp. 1-66
Author(s):  
Shuo Li ◽  
Wei Mei ◽  
Shang-Ping Xie

AbstractThis study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basin-wide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific Meridional Mode (PMM), Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO) and Atlantic Meridional Mode (AMM). These modes account for approximately 58%, 50% and 56% of the variance in basin-wide TCGF during 1969–2018 over the North Atlantic (NA), Northeast Pacific (NEP) and Northwest Pacific (NWP), respectively. The SST effect is weak on TCGF variability in the North Indian Ocean. The dominant SST modes differ among the basins: ENSO, the AMO, AMM and GW for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basin-wide TCGF are stable in time in the NA and NWP, but strengthen after the mid-1970s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2019 ◽  
Vol 11 (22) ◽  
pp. 2613 ◽  
Author(s):  
Eun-Young Lee ◽  
Kyung-Ae Park

Long-term trends of sea surface temperature (SST) of the East Sea (Sea of Japan, EJS) were estimated by using 37-year-long satellite data, for the observation period from 1982 to 2018. Overall, the SST tended to increase with time, for all analyzed regions. However, the warming trend was steeper in the earlier decades since the 1980s and slowed down during the recent two decades. Based on the analysis of the occurrence of events with extreme SST (high in the summertime and low in the wintertime), a shift toward the more frequent occurrence of events with extremely high SST and the less frequent occurrence of events with extremely low SST has been observed. This supports the observations of the consistent warming of the EJS. However, seasonal trends revealed continuous SST warming in the summertime, but frequent extreme SST cooling in the wintertime, in recent decades. The observed reduction in the warming rates occurred more frequently in specific regions of the EJS, where the occurrence frequency of events with extremely low SST was unusually high in the recent decade. The recent tendency toward the SST cooling was distinctively connected with variations in the Arctic Oscillation index. This suggests that changes in the Arctic Ocean environment likely affect the recently observed SST changes in the EJS, as one of the marginal seas in the mid-latitude region far from the polar region.


Sign in / Sign up

Export Citation Format

Share Document