Sister Chromatid Cohesion, Chromosome Instability ( CIN ) and Diseases

Author(s):  
Wei Zhang ◽  
Karen Wing Yee Yuen
2018 ◽  
Vol 29 (15) ◽  
pp. 1811-1824 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
John R. Daum ◽  
Gary J. Gorbsky

Cells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in mitosis. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways that breach sister chromatid cohesion during cohesion fatigue remain unknown. Using moderate-salt buffers to remove loosely bound chromatin cohesin, we show that “cohesive” cohesin is not released during chromatid separation during cohesion fatigue. Using a regulated protein heterodimerization system to lock different cohesin ring interfaces at specific times in mitosis, we show that the Wapl-mediated pathway of cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Finally, while massive separation of chromatids in cohesion fatigue likely produces inviable cell progeny, we find that short metaphase delays, leading to partial chromatid separation, predispose cells to chromosome missegregation. Thus, complete separation of one or a few chromosomes and/or partial separation of sister chromatids may be an unrecognized but common source of chromosome instability that perpetuates the evolution of malignant cells in cancer.


2017 ◽  
Author(s):  
Hem Sapkota ◽  
Emilia Wasiak ◽  
Gary J. Gorbsky

AbstractCells delayed in metaphase with intact mitotic spindles undergo cohesion fatigue, where sister chromatids separate asynchronously, while cells remain in M phase. Cohesion fatigue requires release of sister chromatid cohesion. However, the pathways necessary to breach sister chromatid cohesion during cohesion fatigue remain unknown. Using a regulated protein heterodimerization system to lock different cohesin interfaces at specific times in mitosis, we show that the prophase pathway of Cohesin release is not required for cohesion fatigue. By manipulating microtubule stability and Cohesin complex integrity in cell lines with varying sensitivity to cohesion fatigue, we show that rates of cohesion fatigue reflect a dynamic balance between spindle pulling forces and resistance to separation by interchromatid cohesion. Cohesion fatigue that results in complete chromatid separation may be an unrecognized but common source of chromosome instability. Here, we extend the significance of cohesion fatigue by showing that even limited delays at metaphase lead to partial centromere separation and predispose cells to chromosome missegregation.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wei Zhang ◽  
Clarence Hue Lok Yeung ◽  
Liwen Wu ◽  
Karen Wing Yee Yuen

Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1’s function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.


Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Sign in / Sign up

Export Citation Format

Share Document