Time Evolution of Microstructure During Forced Flow Chemical Vapor Infiltration of a Continuous Fiber Ceramic Matrix Composite

Author(s):  
J. H. Kinney ◽  
D. L. Haupt ◽  
T. M. Breunig ◽  
M. C. Nichols ◽  
T. L. Starr ◽  
...  
2005 ◽  
Vol 129 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Mark van Roode ◽  
Jeff Price ◽  
Josh Kimmel ◽  
Naren Miriyala ◽  
Don Leroux ◽  
...  

Solar Turbines Incorporated, under U.S. government sponsored programs, has been evaluating ceramic matrix composite combustor liners in test rigs and Solar’s Centaur® 50S gas turbine engines since 1992. The objective is to evaluate and improve the performance and durability of CMCs as high-temperature materials for advanced low emissions combustors. Field testing of CMC combustor liners started in May of 1997 and by the end of 2004, over 67,000 operating hours had been accumulated on SiC∕SiC and oxide∕oxide CMC liners. NOx and CO emissions have been consistently <15ppmv and <10ppmv, respectively. Maximum test durations of 15,144h and 13,937h have been logged for SiC∕SiC liners with protective environmental barrier coatings. An oxide∕oxide CMC liner with a Friable Graded Insulation coating has been tested for 12,582h. EBCs significantly improve SiC∕SiC CMC liner life. The basic three-layer EBC consists of consecutive layers of Si, mullite, and BSAS. The durability of the baseline EBC can be improved by mixing BSAS with mullite in the intermediate coating layer. The efficacy of replacing BSAS with SAS has not been demonstrated yet. Heavy degradation was observed for two-layer Si∕BSAS and Si∕SAS EBCs, indicating that the elimination of the intermediate layer is detrimental to EBC durability. Equivalent performance was observed when the Hi-Nicalon fiber reinforcement was replaced with Tyranno ZM or ZMI fiber. Melt infiltrated SiC∕SiC CMCs have improved durability compared to SiC∕SiC CMCs fabricated by Chemical Vapor Infiltration of the matrix, in the absence of an EBC. However, the presence of an EBC results in roughly equivalent service life for MI and CVI CMCs. Results to date indicate that oxide∕oxide CMCs with protective FGI show minor degradation under Centaur® 50S gas turbine engine operating conditions. The results of, and lessons learned from CMC combustor liner engine field testing, conducted through 2004, have been summarized.


Author(s):  
Mark van Roode ◽  
Jeff Price ◽  
Josh Kimmel ◽  
Naren Miriyala ◽  
Don Leroux ◽  
...  

Solar Turbines Incorporated (Solar) under U.S. government sponsored programs has been evaluating ceramic matrix composite (CMC) combustor liners in test rigs and Solar Centaur® 50S engines since 1992. The objective was to evaluate and improve the performance and durability of CMCs as high temperature materials for advanced low emissions combustors. Field testing of CMC combustor liners started in May 1997 and by the end of 2004, over 67,000 operating hours have been accumulated on SiC/SiC and oxide/oxide CMC liners. NOx and CO emissions measured were &lt; 15 ppmv and &lt; 10 ppmv, respectively. Long test durations of 15,144 hrs and 13,937 hrs have been logged for SiC/SiC liners with protective environmental barrier coatings (EBCs). An oxide/oxide CMC liner with a Friable Graded Insulation (FGI) coating has been tested for 12,582 hrs. It was observed that EBCs significantly improve SiC/SiC CMC liner life. The basic three-layer EBC consists of consecutive layers of Si, mullite, and barium strontium aluminum silicate (BSAS). The durability of the baseline EBC can be improved by mixing in BSAS with mullite in the intermediate coating layer. The efficacy of replacing BSAS with SAS has not been demonstrated yet. Heavy degradation was observed for two-layer Si/BSAS and Si/SAS EBCs, indicating that the elimination of the intermediate layer is detrimental to EBC durability. Equivalent performance was observed when the Hi-Nicalon fiber reinforcement was replaced with Tyranno ZM or ZMI fiber. Melt infiltrated (MI) SiC/SiC CMCs have improved durability compared to SiC/SiC CMCs fabricated by Chemical Vapor Infiltration (CVI) of the matrix, in the absence of an EBC. However, the presence of an EBC results in roughly equivalent service life for MI and CVI CMCs. Early results indicate that oxide/oxide CMCs with protective FGI show relatively minor degradation under Centaur 50S engine operating conditions. The results of and lessons learned from CMC combustor liner engine field testing, conducted through 2004, have been summarized.


Carbon ◽  
1995 ◽  
Vol 33 (9) ◽  
pp. 1211-1215 ◽  
Author(s):  
Sundar Vaidyaraman ◽  
W.Jack Lackey ◽  
Pradeep K. Agrawal ◽  
Garth B. Freeman

2013 ◽  
Vol 721 ◽  
pp. 117-120
Author(s):  
Wei Liu ◽  
Gui Qiong Jiao ◽  
Jing Guo ◽  
Hao Tian Jiang

Z-pins reinforced 2D ceramic matrix composites (CMCs), integratedly designed new materials, are developed to enhance 2D CMCs through-thickness in the form of Z-pins and to ensure significant increase in interlaminar fracture toughness, delamination resistance and impact resistance, and Z-pins reinforced 2D CMCs have much application. A manual pre-stitching method is developed to make holes in the graphite fixture to control Z-pins row spacings and to introduce yarns of 3000 T300 carbon fibers bundle into a preform. Z-pins reinforced woven CMCs for research were manufactured successfully by repeatedly using chemical vapor infiltration (CVI) to infiltrate SiC matrix into woven preform and carbon fiber sutures. It is shown that this method of manufactured Z-pins reinforced woven CMC is feasible.


1991 ◽  
Vol 250 ◽  
Author(s):  
Ching-Yi Tsai ◽  
Seshu B. Desu

AbstractA model, incorporating both gas-phase and surface reactions, for simulating thickness profile of SiC, deposited from trichloromethylsilane (TMS), along the longitudinal direction of a single pore is presented in this paper. The transport mechanisms considered include both forced-flow and diffusion. With the nonlinear nature of this model, a finite element model was developed to solve the problem numerically. Simulation results were in good agreement with the reported experimental data by Fedou et al. (1990). Effects of critical parameters, such as deposition temperature, ratio of sticking coefficients of TMS and intermediate species, and forced-flow, on the deposition thickness profile were investigated. Forced-flow effect was found to be small for the chemical vapor infiltration (CVI) processes at high deposition temperatures.


2007 ◽  
Vol 336-338 ◽  
pp. 1248-1250
Author(s):  
Ming Yuan ◽  
Zheng Ren Huang ◽  
Shao Ming Dong ◽  
Dong Liang Jiang

A method of waved-thermal field chemical vapor infiltration was introduced. And interphases of silicon carbide layer and carbon layer were processed via the route. The preforms with the interfacial coatings were densified by method of forced-flow thermal-gradient chemical vapor infiltration (FCVI) employing hexamethyldisilazane (HMDS) as precursor material of the matrix. The matrix of the composites annealed at 1400°C consists of nano-polycrystalline silicon carbide. The configuration of fracture surface was observed by scanning electronic microscopy (SEM). The interphases behaved successfully as mechanical fuse for the reinforcing fibers.


Sign in / Sign up

Export Citation Format

Share Document