2007 ◽  
Vol 336-338 ◽  
pp. 1248-1250
Author(s):  
Ming Yuan ◽  
Zheng Ren Huang ◽  
Shao Ming Dong ◽  
Dong Liang Jiang

A method of waved-thermal field chemical vapor infiltration was introduced. And interphases of silicon carbide layer and carbon layer were processed via the route. The preforms with the interfacial coatings were densified by method of forced-flow thermal-gradient chemical vapor infiltration (FCVI) employing hexamethyldisilazane (HMDS) as precursor material of the matrix. The matrix of the composites annealed at 1400°C consists of nano-polycrystalline silicon carbide. The configuration of fracture surface was observed by scanning electronic microscopy (SEM). The interphases behaved successfully as mechanical fuse for the reinforcing fibers.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Christian P. Deck ◽  
H. E. Khalifa ◽  
B. Sammuli ◽  
C. A. Back

Silicon carbide fiber/silicon carbide matrix (SiC-SiC) composites exhibit remarkable material properties, including high temperature strength and stability under irradiation. These qualities have made SiC-SiC composites extremely desirable for use in advanced nuclear reactor concepts, where higher operating temperatures and longer lives require performance improvements over conventional metal alloys. However, fabrication efficiency advances need to be achieved. SiC composites are typically produced using chemical vapor infiltration (CVI), where gas phase precursors flow into the fiber preform and react to form a solid SiC matrix. Forced flow CVI utilizes a pressure gradient to more effectively transport reactants into the composite, reducing fabrication time. The fabrication parameters must be well understood to ensure that the resulting composite has a high density and good performance. To help optimize this process, a computer model was developed. This model simulates the transport of the SiC precursors, the deposition of SiC matrix on the fiber surfaces, and the effects of byproducts on the process. Critical process parameters, such as the temperature and reactant concentration, were simulated to identify infiltration conditions which maximize composite density while minimizing the fabrication time.


Carbon ◽  
1995 ◽  
Vol 33 (9) ◽  
pp. 1211-1215 ◽  
Author(s):  
Sundar Vaidyaraman ◽  
W.Jack Lackey ◽  
Pradeep K. Agrawal ◽  
Garth B. Freeman

Sign in / Sign up

Export Citation Format

Share Document