Sampling Recreational Waters

Author(s):  
A. H. El-Shaarawi ◽  
S. R. Esterby
Keyword(s):  
2015 ◽  
Vol 2015 (12) ◽  
pp. 1884-1886
Author(s):  
Charles P Gerba ◽  
Bradley W Schmitz ◽  
Alexander N Wassimi ◽  
Ian L Pepper

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractBackground Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman’s rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 503 ◽  
Author(s):  
David M. Hartnell ◽  
Ian J. Chapman ◽  
Nick G. H. Taylor ◽  
Genoveva F. Esteban ◽  
Andrew D. Turner ◽  
...  

Freshwater cyanobacteria blooms represent a risk to ecological and human health through induction of anoxia and release of potent toxins; both conditions require water management to mitigate risks. Many cyanobacteria taxa may produce microcystins, a group of toxic cyclic heptapeptides. Understanding the relationships between the abiotic drivers of microcystins and their occurrence would assist in the implementation of targeted, cost-effective solutions to maintain safe drinking and recreational waters. Cyanobacteria and microcystins were measured by flow cytometry and liquid chromatography coupled to tandem mass spectrometry in two interconnected reservoirs varying in age and management regimes, in southern Britain over a 12-month period. Microcystins were detected in both reservoirs, with significantly higher concentrations in the southern lake (maximum concentration >7 µg L−1). Elevated microcystin concentrations were not positively correlated with numbers of cyanobacterial cells, but multiple linear regression analysis suggested temperature and dissolved oxygen explained a significant amount of the variability in microcystin across both reservoirs. The presence of a managed fishery in one lake was associated with decreased microcystin levels, suggestive of top down control on cyanobacterial populations. This study supports the need to develop inclusive, multifactor holistic water management strategies to control cyanobacterial risks in freshwater bodies.


Resuscitation ◽  
2017 ◽  
Vol 114 ◽  
pp. A12-A13
Author(s):  
Joost J.L.M. Bierens
Keyword(s):  

2009 ◽  
Vol 8 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Marta Sofia Valente ◽  
Paulo Pedro ◽  
M. Carmen Alonso ◽  
Juan J. Borrego ◽  
Lídia Dionísio

Monitoring the microbiological quality of water used for recreational activities is very important to human public health. Although the sanitary quality of recreational marine waters could be evaluated by standard methods, they are time-consuming and need confirmation. For these reasons, faster and more sensitive methods, such as the defined substrate-based technology, have been developed. In the present work, we have compared the standard method of membrane filtration using Tergitol-TTC agar for total coliforms and Escherichia coli, and Slanetz and Bartley agar for enterococci, and the IDEXX defined substrate technology for these faecal pollution indicators to determine the microbiological quality of natural recreational waters. ISO 17994:2004 standard was used to compare these methods. The IDEXX for total coliforms and E. coli, Colilert®, showed higher values than those obtained by the standard method. Enterolert® test, for the enumeration of enterococci, showed lower values when compared with the standard method. It may be concluded that more studies to evaluate the precision and accuracy of the rapid tests are required in order to apply them for routine monitoring of marine and freshwater recreational bathing areas. The main advantages of these methods are that they are more specific, feasible and simpler than the standard methodology.


Epidemiology ◽  
2017 ◽  
Vol 28 (5) ◽  
pp. 644-652 ◽  
Author(s):  
Jade Benjamin-Chung ◽  
Benjamin F. Arnold ◽  
Timothy J. Wade ◽  
Kenneth Schiff ◽  
John F. Griffith ◽  
...  

Author(s):  
Parmeshwar L. Shrestha ◽  
Douglas Hamilton ◽  
Neil Jordan ◽  
Macan Doroudian ◽  
Sandra Hong ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document