Normal Physiological Ageing

Author(s):  
Roger Watson
Keyword(s):  

Thorax ◽  
2001 ◽  
Vol 56 (6) ◽  
pp. 450-455
Author(s):  
E Mund ◽  
B Christensson ◽  
K Larsson ◽  
R Grönneberg

BACKGROUNDAge related changes in the immune system have been studied frequently but a possible relation to sex has not, to our knowledge, previously been examined. The effect of age and sex on the composition of lymphocyte subsets in bronchoalveolar lavage (BAL) fluid and peripheral blood was therefore examined.METHODSBronchoscopy with lavage was performed in 32 healthy non-atopic, non-smoking volunteers (16 women aged 26–63 years (mean 44) and 16 men aged 23–63 years (mean 39)). Cytospin preparations for differential counts of BAL fluid cells and surface antigen expression of lymphocytes from BAL fluid and blood were analysed by flow cytometry.RESULTSMost parameters in the BAL fluid changed with age in women. The percentage of CD4+ lymphocytes increased with age from a mean of 48 (SD10)% in women aged ⩽40 years to 69 (11)% in women aged >43 years (p=0.001). The percentage of CD8+ lymphocytes tended to decrease with age and the CD4/CD8 ratio was 5.8 (1.2) in women aged >43 years compared with 2.1 (0.7) in those aged ⩽40 years (p<0.0001). Women aged >43 years differed from men aged >43 years as well as from younger subjects of both sexes with respect to CD4+ cells and CD4/CD8 ratio, and from younger women with respect to CD8+ cells. There was no age related change in the CD4/CD8 ratio in blood. No sex related differences were seen in the blood or BAL fluid of adults below the age of 40 years.CONCLUSIONSThe composition of lymphocytes with different phenotypes in the lower respiratory tract changes with age in women but not in men. This may have implications for some clinical conditions such as chronic dry cough which are observed predominantly in women.



Author(s):  
Marloes Verkerke ◽  
Elly M. Hol ◽  
Jinte Middeldorp

AbstractAgeing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer’s disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.



1990 ◽  
Vol 67 (9) ◽  
pp. 603-613 ◽  
Author(s):  
M. K. van Ittersum ◽  
K. Schölte ◽  
L. J. P. Kupers


2018 ◽  
Vol 25 (11) ◽  
pp. 1294-1310 ◽  
Author(s):  
Raffaella Mastrocola ◽  
Manuela Aragno ◽  
Giuseppe Alloatti ◽  
Massimo Collino ◽  
Claudia Penna ◽  
...  

In the last decades, the extension of life expectancy and the increased consumption of foods rich in saturated fats and added sugars have exposed the general population to emerging health problems. The prevalence of metabolic syndrome (MS), composed of a cluster of factors as obesity, dyslipidemia, hyperglycemia, and hypertension, is rapidly increasing in industrialized and developing countries leading to precocious onset of age-related diseases. Indeed, oxidative stress, accumulation of advanced glycation endproducts, and a chronic low-grade inflammation are common features of MS and physiological ageing. In particular, the entire set of MS factors contributes to the development of an inflammatory status named metaflammation, which has been associated with activation of early innate immune response through the assembling of the multiprotein complex inflammasome. The most investigated family of inflammasome platforms is the NOD-like receptor pyridine containing (NLRP) 3, which is activated by several exogenous and endogenous stimuli, leading to the sequential cleavage of caspase-1 and IL-1β, followed by secretion of active IL-1β. We here collect the most recent findings on NLRP3 activation in MS providing evidence of its central role in disease progression and organ dysfunction in target tissues of metaflammation, in particular in cardiovascular, hepatic and renal complications, with a focus on oxidative stress and advanced glycation endproducts. A wide overview of the most promising strategies for the modulation of NLRP3 activation and related metabolic repercussions is also provided, since the finding of specific pharmacological tools is an urgent requirement to reduce the social and economic burden of MS- and elderly-associated diseases.





2003 ◽  
pp. 241-249 ◽  
Author(s):  
P.H. Brown ◽  
B. Beattie ◽  
R. Laurence


2000 ◽  
Vol 137 (2) ◽  
pp. 189-199 ◽  
Author(s):  
WARREN K COLEMAN




Author(s):  
Robert Dinser ◽  
Ulf Müller-Ladner

This chapter summarizes muscle structure and physiology, the genesis and adaptions of muscle throughout life, and clinical assessment of muscle disease. The anatomical and molecular structure of muscle tissue is described, as well as the basic function of the neuromuscular junction, the energy metabolism of muscle tissue, and the mechanisms of fatigue. Key elements of embryological myogenesis, the adaptions of muscle to exercise and damage, and physiological ageing are depicted. A summary of the clinical analysis of muscle function including laboratory, electrophysiological, and imaging testing is provided.



Sign in / Sign up

Export Citation Format

Share Document