Role of the Thalamus in the Bilateral Regulation of Dopaminergic and GABAergic Neurons in the Basal Ganglia

Author(s):  
J. Glowinski ◽  
M. J. Besson ◽  
A. Cheramy
2018 ◽  
Author(s):  
Danqian Liu ◽  
Chenyan Ma ◽  
Weitong Zheng ◽  
Yuanyuan Yao ◽  
Yang Dan

AbstractFrom invertebrates to humans, a defining feature of sleep is behavioral immobility(Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000). In mammals, diminished electromyographic (EMG) activity is a major criterion for both rapid eye movement (REM) and non-REM (NREM) sleep. However, the relationship between sleep and motor control at the neuronal level remains poorly understood. Here we show that regions of the basal ganglia long known to be essential for motor suppression also play a key role in sleep generation. Optogenetic or chemogenetic activation of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) strongly increased both REM and NREM sleep, whereas their inactivation suppressed sleep and increased wakefulness. Analysis of natural home-cage behavior showed that mice transition sequentially through several behavioral states: locomotion, non-locomotor movement, quiet wakefulness, and sleep. Activation/inactivation of SNr neurons promoted/suppressed sleep by biasing the direction of progression through the natural behavioral sequence. Virus-mediated circuit tracing showed that SNr GABAergic neurons project to multiple wake-promoting monoaminergic cell groups in addition to the thalamus and mesencephalic locomotor region, and activating each projection promoted sleep. Within the thalamus, direct optogenetic inactivation of glutamatergic neurons is sufficient to enhance sleep, but the effect is largely restricted to the regions receiving SNr projection. Furthermore, a major source of excitatory inputs to the SNr is the subthalamic nucleus (STN), and activation of neurotensin-expressing glutamatergic neurons in the STN also promoted sleep. Together, these results demonstrate a key role of the STN-SNr basal ganglia pathway in sleep generation and reveal a novel circuit mechanism linking sleep and motor control.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lei Xiao ◽  
Devin P. Merullo ◽  
Therese M. I. Koch ◽  
Mou Cao ◽  
Marissa Co ◽  
...  

AbstractDisruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.


2012 ◽  
Vol 23 (5-6) ◽  
Author(s):  
Claudio Da Cunha ◽  
Alexander Gomez-A ◽  
Charles D. Blaha

1987 ◽  
Vol 50 (3) ◽  
pp. 367-368 ◽  
Author(s):  
A S Walters ◽  
M Katchen ◽  
J Fleishman ◽  
S Chokroverty ◽  
R Duvoisin

2004 ◽  
Vol 18 (2/3) ◽  
pp. 130-139 ◽  
Author(s):  
Guillermo Paradiso ◽  
Danny Cunic ◽  
Robert Chen

Abstract Although it has long been suggested that the basal ganglia and thalamus are involved in movement planning and preparation, there was little direct evidence in humans to support this hypothesis. Deep brain stimulation (DBS) is a well-established treatment for movement disorders such as Parkinson's disease, tremor, and dystonia. In patients undergoing DBS surgery, we recorded simultaneously from scalp contacts and from electrodes surgically implanted in the subthalamic nucleus (STN) of 13 patients with Parkinson's disease and in the “cerebellar” thalamus of 5 patients with tremor. The aim of our studies was to assess the role of the cortico-basal ganglia-thalamocortical loop through the STN and the cerebello-thalamocortical circuit through the “cerebellar” thalamus in movement preparation. The patients were asked to perform self-paced wrist extension movements. All subjects showed a cortical readiness potential (RP) with onset ranging between 1.5 to 2s before the onset of movement. Subcortical RPs were recorded in 11 of 13 with electrodes in the STN and in 4 of 5 patients with electrodes in the thalamus. The onset time of the STN and thalamic RPs were not significantly different from the onset time of the scalp RP. The STN and thalamic RPs were present before both contralateral and ipsilateral hand movements. Postoperative MRI studies showed that contacts with maximum RP amplitude generally were inside the target nucleus. These findings indicate that both the basal ganglia and the cerebellar circuits participate in movement preparation in parallel with the cortex.


2010 ◽  
Vol 68 ◽  
pp. e185
Author(s):  
Ryoji Fukabori ◽  
Kana Okada ◽  
Nobuyuki Kai ◽  
Kenta Kobayashi ◽  
Yuji Tsutsui ◽  
...  

1987 ◽  
Vol 151 (3) ◽  
pp. 288-301 ◽  
Author(s):  
P. J. McKenna

The dopamine hypothesis of schizophrenia implies that positive schizophrenic symptoms should be understandable by reference to brain structures receiving a dopamine innervation, or in terms of the functional role of dopamine itself. The basal ganglia, ventral striatum, septo-hippocampal system, and prefrontal cortex, sites of mesotelencephalic dopamine innervation, are examined and it is argued that their dysfunction could form the basis of particular schizophrenic symptom classes. The postulated involvement of dopamine in reinforcement processes might further assist such interpretations. This type of analysis can be extended to other categories of schizophrenic psychopathology.


1998 ◽  
Vol 32 (1-2) ◽  
pp. 213-223 ◽  
Author(s):  
C Deransart ◽  
L Vercueil ◽  
C Marescaux ◽  
A Depaulis

Sign in / Sign up

Export Citation Format

Share Document