Large Rivers from Space

Large Rivers ◽  
2008 ◽  
pp. 535-552 ◽  
Author(s):  
Leal A. K. Mertes ◽  
T. Tamuka Magadzire
Keyword(s):  
1984 ◽  
Vol 11 (4) ◽  
pp. 798-814 ◽  
Author(s):  
Bernard Michel

There are many theories pertaining to the progression of ice covers in rivers fed by frazil slush and floes but very few have been examined critically by comparing them with field data. In this paper the existing theories on dynamic ice cover progression are reviewed, an additional one is proposed, and they are classified according to the physical mechanisms that are involved. Finally, they are compared with some existing field data for large rivers. The data are extremely scarce and difficult to obtain because of the costs involved and the dangers in traveling over thin ice when the ice cover is being formed.It is usually easier to get only the critical values of parameters giving the limits of ice cover progression. In this paper, complete data were taken from the St. Lawrence River, the Beauharnois Canal, and the La Grande Rivière where the ice thicknesses along with the flow parameters have been measured.In these cases the existing data are adequate, so they could be grouped to explain the various mechanisms involved and to obtain numerical values for their quantitative determination. Key words: glaciology, river ice, ice dynamics, fluvial processes, ice hydraulics.


Zootaxa ◽  
2017 ◽  
Vol 4247 (2) ◽  
pp. 141 ◽  
Author(s):  
OLEG E. KOSTERIN ◽  
NAZYMGUL AKIMBEKOVA ◽  
VLADIMIR V. DUBATOLOV ◽  
IGNAC SIVEC

Taeniopteryx araneoides Klápalek, 1902, a stonefly species with brachypterous males, known historically from the Danube, Elbe, and Dniester rivers, but considered to be extinct at least in Europe for more than a century. This species has also been doubtfully reported from Krasnoyarsk, Central Siberia. However, we report this species to be still thriving in the Irtysh River at the cities of Omsk (West Siberia, Russia) and Pavlodar (North Kazakhstan). The occurrence of this species reported least fifty years ago from the Yenisey River at Krasnoyarsk, Russia is considered possible. Unlike the widespread Palaearctic T. nebulosa (Linnaeus, 1758) that occurs in a broad range of stream types, T. araneoides is a potomon species, apparently confined to large rivers. In this habitat, it appears vulnerable to anthropogenic impacts and may be unable to compete with T. nebulosa. The construction of dams and reservoirs has apparently extirpated T. araneoides from most of its former geographical range. 


Hydrobiologia ◽  
2003 ◽  
Vol 500 (1-3) ◽  
pp. 157-178 ◽  
Author(s):  
Bram G.W. Aarts ◽  
Piet H. Nienhuis
Keyword(s):  

2013 ◽  
Vol 10 (3) ◽  
pp. 2879-2925 ◽  
Author(s):  
R. C. D. Paiva ◽  
W. Collischonn ◽  
M.-P. Bonnet ◽  
L. G. G. de Gonçalves ◽  
S. Calmant ◽  
...  

Abstract. In this work we introduce and evaluate a data assimilation framework for gauged and radar altimetry-based discharge and water levels applied to a large scale hydrologic-hydrodynamic model for stream flow forecasts over the Amazon River basin. We used the process-based hydrological model called MGB-IPH coupled with a river hydrodynamic module using a storage model for floodplains. The Ensemble Kalman Filter technique was used to assimilate information from hundreds of gauging and altimetry stations based on ENVISAT satellite data. Model state variables errors were generated by corrupting precipitation forcing, considering log-normally distributed, time and spatially correlated errors. The EnKF performed well when assimilating in situ discharge, by improving model estimates at the assimilation sites and also transferring information to ungauged rivers reaches. Altimetry data assimilation improves results at a daily basis in terms of water levels and discharges with minor degree, even though radar altimetry data has a low temporal resolution. Sensitivity tests highlighted the importance of the magnitude of the precipitation errors and that of their spatial correlation, while temporal correlation showed to be dispensable. The deterioration of model performance at some unmonitored reaches indicates the need for proper characterization of model errors and spatial localization techniques for hydrological applications. Finally, we evaluated stream flow forecasts for the Amazon basin based on initial conditions produced by the data assimilation scheme and using the ensemble stream flow prediction approach where the model is forced by past meteorological forcings. The resulting forecasts agreed well with the observations and maintained meaningful skill at large rivers even for long lead times, e.g. > 90 days at the Solimões/Amazon main stem. Results encourage the potential of hydrological forecasts at large rivers and/or poorly monitored regions by combining models and remote sensing information.


Sign in / Sign up

Export Citation Format

Share Document