Uncertainty and Reliability Study of a Creep Law to Assess the Fuel Cladding Behaviour of PWR Spent Fuel Assemblies during Interim Dry Storage

2008 ◽  
pp. 111-122
Author(s):  
Mile Bace ◽  
Kresimir Trontl ◽  
Dubravko Pevec

Abstract The intention was to model a dry storage facility that could satisfy the needs of a medium nuclear power plant similar to the NPP Krsko. The attention has been focused on radiation dose rate analyses and criticality calculations. Using the SCALE 4.4 code package and modified QAD-CGGP code, we modeled a facility that satisfies the basic criteria for public radiation protection. The capacity of the storage is 1,400 spent fuel assemblies which is adequate for a forty years medium NPP lifetime.


Author(s):  
Mengqi Wang ◽  
Nan Pan ◽  
Hui Li ◽  
Baojun Jia

Spent fuel dry storage technology is one of the most important intermediate storage technologies for spent fuel, because of its high security, good economic and easy to expand the scale. This article aims at designing a spent fuel dry storage cask which can contain 21 FA300 spent fuel assemblies. The spent fuel dry storage cask is designed as concrete cask structure, which has the advantages of low manufacturing cost and simple manufacturing technology. Ventilation channels are designed for heating transfer, because the concrete is not a good thermal conductivity material. And labyrinth structure is designed for the ventilation channel to reduce the cavity streaming. Radiation sources in spent fuel assemblies are mainly produced from fission products, actinides and their daughters located inside the effective fuel region, and other activation products in structure materials, which are calculated by ORIGEN. The source and geometry of this problem are complex, and this is a real world deep penetration and streaming problem. Discrete ordinate method has great advantage in solving the deep penetration problem. Based on three-dimensional discrete ordinate code TORT, radiation shielding design method for spent fuel dry storage cask is studied, including main shield cask, cover lid, and ventilation channel. The results show that this spent fuel dry storage cask containing 21 FA300 spent fuel (cooling time: 10 years) assemblies can satisfy the requirement of dose rate limits in GB18871.


Author(s):  
Jie Li ◽  
Yung Y. Liu

This paper is a continuation of previous work; it focuses on validating the thermal analysis of a vertical dry storage cask by using the measured temperature data and the results obtained by others in thermal modeling of a HI-STORM 100 storage cask at Diablo Canyon’s independent spent fuel storage installation (ISFSI). The cask chosen for thermal analysis contains a welded canister for 32 pressurized water reactor (PWR) used fuel assemblies in a stainless-steel basket with a total decay heat load of 17.05 kW. An effective thermal conductivity model was used to represent the used fuel assemblies with non-uniform assembly heat loads. The pressure of the canister’s helium fill gas was assumed to be 5 atm, and the ambient temperature was assumed to be 10°C. The results showed reasonably good agreement between the calculated and measured canister axial surface temperatures. The results of ANSYS/FLUENT simulations showed that a tighter convergence criterion yielded slightly better agreement with the data; however, improvement could be obtained by adjusting the assumed ambient temperature value in the simulation. Validating the results of ANSYS/FLUENT simulation against the data (as well as the experience and additional insights gained from the validation exercise) is important to our future simulation and analysis of the thermal performance of dry storage casks, particularly for aging management and monitoring the condition and performance of dry casks during extended long-term storage at ISFSIs.


Author(s):  
Davor Grgic ◽  
Mario Matijevic ◽  
Paulina Duckic ◽  
Radomir Jecmenica

Abstract In this paper shielding analysis was performed to determine neutron and gamma dose rates around the transfer cask HI-TRAC VW loaded with Spent Fuel Assemblies (SFA) from Nuclear Power Plant (NPP) Krsko Spent Fuel Dry Storage (SFDS) Campaign one. The HI-TRAC VW is a multi-layered cylindrical vessel designed to accept a Multi Purpose Canister (MPC) during loading, unloading and transfer to dry storage building. The MPC can contain up to 37 spent fuel assemblies. The analysis was divided into two steps. The first step was the source term generation using ORIGEN-S module of the SCALE code package. The source was calculated based on the operating history of spent fuel assemblies currently located in the NPP Krsko spent fuel pool. The obtained particle intensities and source spectra of the SFA were used in the second step to calculate the dose rates around the transfer cask. A comprehensive hybrid shielding analysis included the calculation of dose rates resulting from fuel neutrons and gammas, neutron induced gammas (n-g reaction), and hardware activation gammas under normal conditions and during accident scenario. To obtain the dose rates within the acceptable uncertainties, FW-CADIS variance reduction scheme, as implemented in ADVANTG code, was adopted for accelerating final MCNP6 calculations. The dose rates around HI-TRAC VW cask were calculated using MCNP6 code for all 16 casks loading belonging to Campaign one in order to illustrate the impact of fuel assembly selection schemes proposed by company responsible for project realization (Holtec International).


Author(s):  
Bing Ren ◽  
Chenxiao Ni ◽  
Yu Dang ◽  
Jiazheng Liu

A new type of dry storage system is designed by Shanghai Nuclear Engineering Research & Design Institute (SNERDI), which can efficiently remove the decay heat of the hexagonal spent fuel assemblies such as VVER fuel assemblies. The dry storage system includes a Ventilated Concrete Cask (VCC) and a Multi-assembly sealed basket (MSB). Decay heat is removed by natural circulation with helium and air, heat conduction and thermal radiation heat transfer. Thermal performance of the dry storage system has been investigated by two different numerically methods, i.e., the Computational Fluid Dynamics (CFD) method and the lumped parameter method. The CFD method is utilized based on the commercial software STAR-CCM+, and fuel assemblies are modeled as a porous medium characterized by effective conductivity and the permeability and inertial resistance factor, while other geometry including the lids, base plates, inner and outer shell are modeled explicitly with necessary simplifications. The lumped parameter method is utilized based on the system code GOTHIC, the geometry and the fuel assemblies are divided and represented by 44 volumes. The flow of the air and helium are modeled by flow path which connects the related volumes, and the heat transfer between fluid and solid structures are modeled by thermal conductor models. Heat transfer by convection, conduction and thermal radiation is modeled in both of the two methods. The maximum temperature of spent fuel assembly can be obtained by both of the two methods, which can be a design basis for investigations attempting to improve the performance of the dry storage system. It is found that the simulation results calculated by the lumped parameter method are more conservative than those calculated by the CFD method. Both methods indicate that after the storage of 7.5 years, the dry storage system is able to remove the decay heat from the hexagonal spent fuel assemblies, keeping maximum cladding temperature below the design limit. Besides, detailed flow characteristic are obtained by CFD simulation. Furthermore, effects of MSB normal operating pressure and the ambient temperature are studied.


Author(s):  
Robert A. Brewster ◽  
Emilio Baglietto ◽  
Eric Volpenhein ◽  
Christopher S. Bajwa

Dry storage casks are used to store spent nuclear fuel after removal from the reactor spent fuel pool. Even prior to the Fukushima earthquake of March 2011, dry storage of spent fuel was receiving increased attention as many reactor spent fuel pools near their capacity. Many different types of cask designs are used, and one representative design is the TN-24P spent fuel cask, a non-ventilated steel cask with a shielded exterior shell and lid. The cask is typically filled with an inert gas such as helium, argon or nitrogen. In this paper, Computational Fluid Dynamics (CFD) calculation results for the thermal performance of the TN-24P cask using the commercial CFD software STAR-CCM+ are presented. Initial calculations employ a common approach of treating the fuel assemblies as conducting porous media with calibrated volume-averaged properties, and comparison to existing measured temperature data shows good agreement. One of the fuel assemblies is then replaced with a more accurate representation that includes the full geometric detail of the fuel rods, guide tubes, spacer grids and end fittings (flow nozzles), and the results shown are consistent with the initial analysis, but without the need for the assumptions inherent in the porous media approach. This hybrid modeling approach also permits the direct determination of important results, such as the precise location of peak fuel cladding temperatures (PCTs), which is not possible using the more traditional porous media approach.


2020 ◽  
pp. 81-84
Author(s):  
S. Alyokhina ◽  
A. Kostikov ◽  
I. Koriahina

Now only one Dry Storage Facility of Spent Nuclear Fuel (DSFSNF) is operated in Ukraine. It is the facility on Zaporizhska NPP. Many different thermal investigations were done for ventilated containers of DSFSNF. In this study the generalization of scientific approaches to the thermal safety assessment are carried out. The multi-stage approach to the definition of thermal state of containers' group, single container, spent fuel assemblies and fuel rods was developed. Detailed thermal profiles of spent fuel assemblies inside storage container were calculated. With usage of multi-stage approach the thermal simulations of the influence of outer factors onto thermal state of containers was carried out. Results of thermal investigations were generalized and factors, which are influence on thermal state of containers, are detected. The method of spent nuclear fuel thermal state prediction and suggestion for improving the system of thermal monitoring were proposed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Ian B. Gomes ◽  
Pedro L. Cruz Saldanha ◽  
Antonio Carlos M. Alvim

The management of spent nuclear fuel assemblies of nuclear reactors is a priority subject among member states of the International Atomic Energy Agency. For the majority of these countries, the destination of such fuel assemblies is a decision that is yet to be made and the “wait-and-see” policy is thus adopted by them. In this case, the irradiated fuel is stored in on-site spent fuel pools until the power plant is decommissioned or, when there is no more racking space in the pool, they are stored in intermediate storage facilities, which can be another pool or dry storage systems, until the final decision is made. The objective of this study is to propose a methodology that, using optimization algorithms, determines the ideal time for removal of the fuel assemblies from the spent fuel pool and to place them into dry casks for intermediate storage. In this scenario, the methodology allows for the optimal dimensioning of the designed spent fuel pools and the casks’ characteristics, thus reducing the final costs for purchasing new Nuclear Power Plants (NPP), as the size and safety features of the pool could be reduced and dry casks, that would be needed anyway after the decommissioning of the plant, could be purchased with optimal costs. To demonstrate the steps involved in the proposed methodology, an example is given, one which uses the Monte Carlo N-Particle code (MCNP) to calculate the shielding requirements for a simplified model of a concrete dry cask. From the given example, it is possible to see that, using real-life data, the proposed methodology can become a valuable tool to help making nuclear energy a more attractive choice costwise.


Sign in / Sign up

Export Citation Format

Share Document