Plant acclimation and adaptation to warm environments

2013 ◽  
pp. 49-78 ◽  
Author(s):  
Martijn van Zanten ◽  
Ralph Bours ◽  
Thijs L. Pons ◽  
Marcel C.G. Proveniers
Keyword(s):  
2020 ◽  
Vol 22 (1) ◽  
pp. 221
Author(s):  
Joanna Wójtowicz ◽  
Adam K. Jagielski ◽  
Agnieszka Mostowska ◽  
Katarzyna B. Gieczewska

The origin of chlorophyll b deficiency is a mutation (ch1) in chlorophyllide a oxygenase (CAO), the enzyme responsible for Chl b synthesis. Regulation of Chl b synthesis is essential for understanding the mechanism of plant acclimation to various conditions. Therefore, the main aim of this study was to find the strategy in plants for compensation of low chlorophyll content by characterizing and comparing the performance and spectral properties of the photosynthetic apparatus related to the lipid and protein composition in four selected Arabidopsis ch1 mutants and two Arabidopsis ecotypes. Mutation in different loci of the CAO gene, viz., NW41, ch1.1, ch1.2 and ch1.3, manifested itself in a distinct chlorina phenotype, pigment and photosynthetic protein composition. Changes in the CAO mRNA levels and chlorophyllide a (Chlide a) content in ecotypes and ch1 mutants indicated their significant role in the adjustment mechanism of the photosynthetic apparatus to low-light conditions. Exposure of mutants with a lower chlorophyll b content to short-term (1LL) and long-term low-light stress (10LL) enabled showing a shift in the structure of the PSI and PSII complexes via spectral analysis and the thylakoid composition studies. We demonstrated that both ecotypes, Col-1 and Ler-0, reacted to high-light (HL) conditions in a way remarkably resembling the response of ch1 mutants to normal (NL) conditions. We also presented possible ways of regulating the conversion of chlorophyll a to b depending on the type of light stress conditions.


2021 ◽  
Vol 22 (3) ◽  
pp. 1088
Author(s):  
Weitao Jia ◽  
Maohua Ma ◽  
Jilong Chen ◽  
Shengjun Wu

Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.


2021 ◽  
Author(s):  
Giulia Mengoli ◽  
Anna Agustí-Panareda ◽  
Souhail Boussetta ◽  
Sandy P. Harrison ◽  
Carlo Trotta ◽  
...  

<p>Vegetation and atmosphere are linked through the perpetual exchange of water, carbon and energy. An accurate representation of the processes involved in these exchanges is crucial in forecasting Earth system states. Although vegetation has become an undisputed key component in land-surface modelling (LSMs), the current generation of models differ in terms of how key processes are formulated. Plant processes react to environmental changes on multiple time scales. Here we differentiate a fast (minutes) and a slower (acclimated – weeks to months) response. Some current LSMs include plant acclimation, even though they require additional parameters to represent this response, but the majority of them represent only the fast response and assume that this also applies at longer time scales. Ignoring acclimation in this way could be the cause of inconsistent future projections. Our proposition is to include plant acclimation in a LSM schema, without having to include new plant-functional-type-dependent parameters. This is possible by using an alternative model development strategy based on eco-evolutionary theory, which explicitly predicts the acclimation of photosynthetic capacities and stomatal behaviour to environmental variations. So far, this theory has been tested only at weekly to monthly timescales. Here we develop and test an approach to apply an existing optimality-based model of gross primary production (GPP), the P model, at the sub-daily timestep necessary for use in an LSM, making an explicit differentiation between the fast and slow responses of photosynthesis and stomatal conductance. We test model performance in reproducing the diurnal cycle of GPP as recorded by flux tower measurements across different biomes, including boreal and tropical forests. The extended model requires only a few meteorological inputs, and a satellite-derived product for leaf area index or green vegetation cover. It is able to manage both timescales of acclimation without PFT-dependent photosynthetic parameters and has shown to operate with very good performance at all sites so far investigated. The model structure avoids the need to store past climate and vegetation states. These findings therefore suggest a simple way to include both instantaneous and acclimated responses within a LSM framework, and to do so in a robust way that does not require the specification of multiple parameters for different plant functional types.</p>


Author(s):  
Brigitte Ksas ◽  
Jean Alric ◽  
Stefano Caffarri ◽  
Michel Havaux

2021 ◽  
pp. 104811
Author(s):  
Bruna L. Merlin ◽  
Lucia P. Ferreira ◽  
Wesley A.C. Godoy ◽  
Gilberto J. Moraes ◽  
Fernando L. Cônsoli

2021 ◽  
pp. 187-214
Author(s):  
M. Nasir Khan ◽  
Manzer H. Siddiqui ◽  
Mazen A. AlSolami ◽  
Riyadh A. Basahi ◽  
Zahid H. Siddiqui ◽  
...  

2020 ◽  
Vol 184 (2) ◽  
pp. 666-675 ◽  
Author(s):  
Yosef Fichman ◽  
Sara I. Zandalinas ◽  
Soham Sengupta ◽  
David Burks ◽  
Ronald J. Myers ◽  
...  

2020 ◽  
Vol 47 (5) ◽  
pp. 383
Author(s):  
Ramces De-Jesús-García ◽  
Ulises Rosas ◽  
Joseph G. Dubrovsky

The root is the main organ through which water and mineral nutrients enter the plant organism. In addition, root fulfils several other functions. Here, we propose that the root also performs the barrier function, which is essential not only for plant survival but for plant acclimation and adaptation to a constantly changing and heterogeneous soil environment. This function is related to selective uptake and avoidance of some soil compounds at the whole plant level. We review the toolkit of morpho-anatomical, structural, and other components that support this view. The components of the root structure involved in selectivity, permeability or barrier at a cellular, tissue, and organ level and their properties are discussed. In consideration of the arguments supporting barrier function of plant roots, evolutionary aspects of this function are also reviewed. Additionally, natural variation in selective root permeability is discussed which suggests that the barrier function is constantly evolving and is subject of natural selection.


Author(s):  
Panagiota Filippou ◽  
Georgia Tanou ◽  
Athanassios Molassiotis ◽  
Vasileios Fotopoulos

Sign in / Sign up

Export Citation Format

Share Document