scholarly journals Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms

2021 ◽  
Vol 22 (3) ◽  
pp. 1088
Author(s):  
Weitao Jia ◽  
Maohua Ma ◽  
Jilong Chen ◽  
Shengjun Wu

Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.

2020 ◽  
Vol 26 ◽  
Author(s):  
Longna Li ◽  
Wang Lou ◽  
Lingshuai Kong ◽  
Wenbiao Shen

Abstract:: The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environment pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to low carbon economy, and has great potential to provide “safe, tasty, healthy, and highyield” agricultural products so that it may improve the sustainability of agriculture.


2022 ◽  
Vol 23 (2) ◽  
pp. 702
Author(s):  
Shuya Tan ◽  
Jie Cao ◽  
Xinli Xia ◽  
Zhonghai Li

Priming is an adaptive strategy that improves plant defenses against biotic and abiotic stresses. Stimuli from chemicals, abiotic cues, and pathogens can trigger the establishment of priming state. Priming with 5-aminolevulinic acid (ALA), a potential plant growth regulator, can enhance plant tolerance to the subsequent abiotic stresses, including salinity, drought, heat, cold, and UV-B. However, the molecular mechanisms underlying the remarkable effects of ALA priming on plant physiology remain to be elucidated. Here, we summarize recent progress made in the stress tolerance conferred by ALA priming in plants and provide the underlying molecular and physiology mechanisms of this phenomenon. Priming with ALA results in changes at the physiological, transcriptional, metabolic, and epigenetic levels, and enhances photosynthesis and antioxidant capacity, as well as nitrogen assimilation, which in turn increases the resistance of abiotic stresses. However, the signaling pathway of ALA, including receptors as well as key components, is currently unknown, which hinders the deeper understanding of the defense priming caused by ALA. In the future, there is an urgent need to reveal the molecular mechanisms by which ALA regulates plant development and enhances plant defense with the help of forward genetics, multi-omics technologies, as well as genome editing technology.


2018 ◽  
Author(s):  
K K VINOD

Breeding nutrient use efficient crop varieties has become a contemporary necessity to arm against the future threats in agriculture. This article comments on the necessity and ways to contemplate newer plant breeding strategies for this endeavor.


2006 ◽  
Vol 30 (4) ◽  
pp. 703-712 ◽  
Author(s):  
TAN Wan_Neng ◽  
◽  
LI Zhi_An ◽  
ZOU Bi ◽  
$author.xingMing_EN

2021 ◽  
Author(s):  
Jing Wang ◽  
Lihua Tang ◽  
Huanyuan Da ◽  
Huan Lu ◽  
Xinping Shi ◽  
...  

Abstract Objective. To understand the difficulties and survival strategies in nursing during NCP outbreak, and to reflect and summarize the experience. Background. Since December 2019, the highly infectious novel coronavirus pneumonia overwhelmed health care systems and medical workers who had to provide care in situations involving high personal risk and stress, some becoming infected and dying. Nurse leaders had to develop new strategies for nursing care. Methods. Using the phenomenological research method in qualitative research, 8 head nurses who participated in NCP treatment were interviewed in-depth, and then Colaizzi 7-step analysis method was used to summarize.Results. Working under great pressure, nursing leaders led the team through a period of crisis: shock and fear, learning in chaos, supporting nurses, and rewarding nurses. Conclusion. As important intervention performers in the crisis, nurse leaders need to have their own outstanding leadership to effectively manage internal conflicts and interpersonal relationships, strengthen teamwork training and establish supportive system so as to better deal with the management of similar public health events in the future. Relevance to clinical practice. Findings will assist nurse leaders to prepare themselves in the outbreak. It is hoped that the results of this study will contribute to disaster management in similar infectious outbreaks in the future.


2018 ◽  
Vol 19 (10) ◽  
pp. 3270 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Hideki Sakai

Royal jelly (RJ) is a glandular secretion produced by worker honeybees and is a special food for the queen honeybee. It results in a significant prolongation of the lifespan of the queen honeybee compared with the worker honeybees through anti-inflammatory, anti-oxidant and anti-microbial activities. Consequently, RJ is used as cosmetic and dietary supplement throughout the world. In addition, in vitro studies and animal experiments have demonstrated that RJ inhibits cell proliferation and stimulates apoptosis in various types of malignant cells and affects the production of various chemokines, anti-oxidants and growth factors and the expression of cancer-related molecules in patients with malignancies, especially in patients treated with anti-cancer agents. Therefore, RJ is thought to exert anti-cancer effects on tumor growth and exhibit protective functions against drug-induced toxicities. RJ has also been demonstrated to be useful for suppression of adverse events, the maintenance of the quality of life during treatment and the improvement of prognosis in animal models and patients with malignancies. To understand the mechanisms of the beneficial effects of RJ, knowledge of the changes induced at the molecular level by RJ with respect to cell survival, inflammation, oxidative stress and other cancer-related factors is essential. In addition, the effects of combination therapies of RJ and other anti-cancer agents or natural compounds are important to determine the future direction of RJ-based treatment strategies. Therefore, in this review, we have covered the following five issues: (1) the anti-cancer effects of RJ and its main component, 10-hydroxy-2-decenoic acid; (2) the protective effects of RJ against anti-cancer agent-induced toxicities; (3) the molecular mechanisms of such beneficial effects of RJ; (4) the safety and toxicity of RJ; and (5) the future directions of RJ-based treatment strategies, with a discussion on the limitations of the study of the biological activities of RJ.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 114
Author(s):  
Lisa Linck-Paulus ◽  
Claus Hellerbrand ◽  
Anja K. Bosserhoff ◽  
Peter Dietrich

In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs—melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these—at first sight—dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.


2018 ◽  
Vol 19 (11) ◽  
pp. 3681 ◽  
Author(s):  
Alia Anwar ◽  
Maoyun She ◽  
Ke Wang ◽  
Bisma Riaz ◽  
Xingguo Ye

Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4631 ◽  
Author(s):  
Elham Ashrafi-Dehkordi ◽  
Abbas Alemzadeh ◽  
Nobukazu Tanaka ◽  
Hooman Razi

A wide range of biotic stresses (BS) and abiotic stresses (AS) adversely affect plant growth and productivity worldwide. The study of individual genes cannot be considered as an effective approach for the understanding of tolerance mechanisms, since these stresses are frequent and often in combination with each other, and a large number of genes are involved in these mechanisms. The availability of high-throughput genomic data has enabled the discovery of the role of transcription factors (TFs) in regulatory networks. A meta-analysis of BS and AS responses was performed by analyzing a total of 391 microarray samples from 23 different experiments and 2,336 differentially expressed genes (DEGs) involved in multiple stresses were identified. We identified 1,862 genes differentially regulated in response to BS was much greater than that regulated by AS, 835 genes, and found 15.4% or 361 DEGs with the conserved expression between AS and BS. The greatest percent of genes related to the cellular process (>76% genes), metabolic process (>76% genes) and response to stimulus (>50%). About 4.2% of genes involved in BS and AS responses belonged to the TF families. We identified several genes, which encode TFs that play an important role in AS and BS responses. These proteins included Jasmonate Ethylene Response Factor 1 (JERF1), SlGRAS6, MYB48, SlERF4, EIL2, protein LATE ELONGATED HYPOCOTYL (LHY), SlERF1, WRKY 26, basic leucine zipper TF, inducer of CBF expression 1-like, pti6, EIL3 and WRKY 11. Six of these proteins, JERF1, MYB48, protein LHY, EIL3, EIL2 and SlGRAS6, play central roles in these mechanisms. This research promoted a new approach to clarify the expression profiles of various genes under different conditions in plants, detected common genes from differentially regulated in response to these conditions and introduced them as candidate genes for improving plant tolerance through genetic engineering approach.


1997 ◽  
Vol 327 (2) ◽  
pp. 617-623 ◽  
Author(s):  
N. Gul SHAH ◽  
Jianping LI ◽  
Patricia SCHNEIDERJOHN ◽  
D. Arshag MOORADIAN

A gene responsive to thyroid hormone (TH) has been identified in the adult rat brain cerebral tissue. A cDNA probe differentially expressed in euthyroid, hypothyroid and hyperthyroid rat cerebral tissue, generated by reverse transcriptase-PCR differential display of mRNA, was used to screen the rat brain cDNA library. A 3.4 kb positive clone hybridized in Northern blots with a 3.8 kb mRNA that proved to be TH responsive (THR). The remaining coding sequence and a part of the 5ʹ untranslated region of this cDNA were obtained by 5ʹ rapid amplification of cDNA ends. The deduced amino acid sequence revealed that THR protein (THRP), a 68 kDa moiety, has 83% sequence similarity with c-Abl interactor protein (Abi-2), which is a substrate for tyrosine kinase activity of c-Abl. The extensive similarity between the two proteins suggests a potential role for THRP as a substrate for c-Abl. Northern analysis showed that the expression of THR mRNA in hyperthyroid rats is 6-fold that in euthyroid rats. There is also a 4-6-fold increase in the concentration of THRP, as analysed by Western analysis. Owing to the extensive similarity between rat THRP and human Abi-2, a polyclonal anti- (human Abi-2) antibody was successfully used for Western analysis of proteins from the rat tissues. The observed increase in both the mRNA and the protein did not decline after β-adrenergic system blockade with propranolol, suggesting that the action of TH on the expression of this gene is not mediated through the β-adrenergic system. Immunohistochemical studies revealed that neuronal cells were particularly rich in THRP. Both THR mRNA and THRP are rapidly induced in vivo after intravenous administration of thyroxine. Tissue distribution studies indicated that the cerebral tissue was particularly enriched with THR mRNA and 68 kDa THRP. A cDNA clone for a THR gene could provide a useful tool to study the molecular mechanisms of TH effects on cerebral tissue in adult animals.


Sign in / Sign up

Export Citation Format

Share Document